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Abstract

In this document, we present the Nelder-Mead component provided in Scilab. The introduction
gives a brief overview of the optimization features of the component and present an introductory
example. Then we present some theory associated with the simplex, a geometric concept which is
central in the Nelder-Mead algorithm. We present several method to compute an initial simplex.
Then we present Spendley’s et al. fixed shape unconstrained optimization algorithm. Several
numerical experiments are provided, which shows how this algorithm performs on well-scaled
and badly scaled quadratics. In the final section, we present the Nelder-Mead variable shape
unconstrained optimization algorithm. Several numerical experiments are presented, where some
of these are counter examples, that is cases where the algorithms fails to converge on a stationnary
point. In the appendix of this document, the interested reader will find a bibliography of simplex-
based algorithms, along with an analysis of the various implementations which are available in
several programming languages.
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Notations

n number of variables
x = (x1, x2, . . . , xn)T ∈ Rn the unknown
x0 ∈ Rn the initial guess
v ∈ Rn a vertex
S = {vi}i=1,m a complex, where m ≥ n+ 1 is the number of vertices
S = {vi}i=1,n+1 a simplex (with n+ 1 vertices)
(vi)j the j-th component of the i-th vertex
S0 the initial simplex
Sk the simplex at iteration k

v
(k)
i the vertex i at iteration k

fki = f
(
v

(
ik)
)

the function value of the vertex i at iteration k

f : Rn → R the cost function

Figure 1: Notations used in this document
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Chapter 1

Introduction

In this introductory chapter, we make an overview of simplex-based algorithms. We present the
main features of the neldermead component, and show how to use the component with a simple
example.

1.1 Overview

The Nelder-Mead simplex algorithm [31], published in 1965, is an enormously popular search
method for multidimensional unconstrained optimization. The Nelder-Mead algorithm should
not be confused with the (probably) more famous simplex algorithm of Dantzig for linear pro-
gramming. The Nelder-Mead algorithm is especially popular in the fields of chemistry, chemical
engineering, and medicine. Two measures of the ubiquity of the Nelder-Mead algorithm are that it
appears in the best-selling handbook Numerical Recipes and in Matlab. In [48], Virginia Torczon
writes: ”Margaret Wright has stated that over fifty percent of the calls received by the support
group for the NAG software library concerned the version of the Nelder-Mead simplex algorithm
to be found in that library”. No derivative of the cost function is required, which makes the
algorithm interesting for noisy problems.

The Nelder-Mead algorithm falls in the more general class of direct search algorithms. These
methods use values of f taken from a set of sample points and use that information to continue
the sampling. The Nelder-Mead algorithm maintains a simplex which are approximations of an
optimal point. The vertices are sorted according to the objective function values. The algorithm
attemps to replace the worst vertex with a new point, which depends on the worst point and the
centre of the best vertices.

The goal of this component is to provide a Nelder-Mead (1965) direct search optimization
method to solve the following unconstrained optimization problem

min f(x) (1.1)

where x ∈ Rn, n is the number of optimization parameters and f is the objective function f : Rn →
R. In order to solve the unconstrained optimization problem, the Nelder-Mead algorithm uses a
variable shape simplex. The module also provide Spendley, Hext and Himsworth’s algorithm [45]
(1962), which uses a fixed shape simplex. Historically, the algorithm created by Nelder and Mead
was designed as an improvement on Spendley’s et al. algorithm. The Box complex algorithm
[5] (1965), which is an extension of Spendley’s et al. algorithm, solves the following constrained
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problem

min f(x) (1.2)

`i ≤ xi ≤ ui, i = 1, n (1.3)

gj(x) ≥ 0, j = 1,m (1.4)

(1.5)

where m is the number of nonlinear, positive constraints and `i, ui ∈ Rn are the lower and upper
bounds of the variables.

The Nelder-Mead algorithm may be used in the following optimization context :

• there is no need to provide the derivatives of the objective function,

• the number of parameters is small (up to 10-20),

• there are bounds and/or non linear constraints.

The internal design of the system is based on the following components.

• The ”neldermead” component provides various simplex-based algorithms and manages for
Nelder-Mead specific settings, such as the method to compute the initial simplex and the
specific termination criteria.

• The ”fminsearch” component provides a Scilab commands which aims at behaving as Mat-
lab’s fminsearch. Specific terminations criteria, initial simplex and auxiliary settings are
automatically configured so that the behavior of Matlab’s fminsearch is exactly reproduced.

• The ”optimset” and ”optimget” components provide Scilab commands to emulate their Mat-
lab counterparts.

• The ”nmplot” component provides features to produce directly output pictures for Nelder-
Mead algorithm.

The module is based on (and therefore requires) the following components.

• The ”optimbase” component provides an abstract class for a general optimization compo-
nent, including the number of variables, the minimum and maximum bounds, the number
of non linear inequality constraints, the logging system, various termination criteria, the
cost function, etc...

• The ”optimsimplex” component provides a class to manage a simplex made of an arbi-
trary number of vertices, including the computation of a simplex by various methods (axes,
regular, Pfeffer’s, randomized bounds), the computation of the size by various methods (di-
ameter, sigma +, sigma-, etc...) and many algorithms to perform reflections and shrinkages.

The following is a list of features the Nelder-Mead algorithm currently provides :

• manage various simplex initializations

– initial simplex given by user,

– initial simplex computed with a length and along the coordinate axes,
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– initial regular simplex computed with Spendley et al. formula

– initial simplex computed by a small perturbation around the initial guess point

• manage cost function

– optionnal additionnal argument

– direct communication of the task to perform : cost function or inequality constraints

• manage various termination criteria

– maximum number of iterations,

– tolerance on function value (relative or absolute),

– tolerance on x (relative or absolute),

– tolerance on standard deviation of function value (original termination criteria in [3]),

– maximum number of evaluations of cost function,

– absolute or relative simplex size,

• manage the history of the convergence, including :

– the history of function values,

– the history of optimum point,

– the history of simplices,

– the history of termination criterias,

• provide a plot command which allows to graphically see the history of the simplices toward
the optimum,

• provide query functions for

– the status of the optimization process,

– the number of iterations,

– the number of function evaluations,

– the status of execution,

– the function value at initial point,

– the function value at optimal point,

– etc...

• Spendley et al. fixed shaped algorithm,

• Kelley restart based on simplex gradient,

• O’Neill restart based on factorial search around optimum,

• Box-like method managing bounds and nonlinear inequality constraints based on arbitrary
number of vertices in the simplex.
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1.2 How to use the Module

The design of the module is based on the creation of a new token by the neldermead new func-
tion. The Nelder-Mead object associated with this token can then be configured with nelder-
mead configure and queried with neldermead cget. For example, the neldermead configure com-
mand allows to configure the number of variables, the objective function and the initial guess.

The main command of the module is the neldermead search command, which solves the op-
timization problem. After an optimization has been performed, the neldermead get command
allows to retrieve the optimum x?, as well as other parameters, such as the number of iterations
performed, the number of evaluations of the function, etc...

Once the optimization is finished, the neldermead destroy function deletes the object.

1.3 An example

In the following example, we search the minimum of the 2D Rosenbrock function [41], defined by

f(x1, x2) = 100(x2 − x1)
2 + (1− x1)

2 (1.6)

The following Scilab script allows to find the solution of the problem. We begin by defining
the function rosenbrock which computes the Rosenbrock function. The traditionnal initial guess
(−1.2, 1.0) is used, which corresponds to the ”-x0” key. The initial simplex is computed along the
axes with a length equal to 0.1. We want to use the Nelder-Mead algorithm with variable simplex
size is used, which corresponds to the ”variable” value of the ”-method” option. The verbose
mode is enabled so that messages are generated during the algorithm. After the optimization is
performed, the optimum is retrieved with quiery features.
function y = rosenbrock (x )

y = 100∗(x(2)−x (1)ˆ2)ˆ2 + (1−x ( 1 ) ) ˆ 2 ;
endfunction
nm = neldermead new ( ) ;
nm = ne ldermead con f igure (nm, ”−numberofvariables” , 2 ) ;
nm = ne ldermead con f igure (nm, ”−x0” , [−1.2 1 . 0 ] ’ ) ;
nm = ne ldermead con f igure (nm, ”−simplex0method” ,”axes” ) ;
nm = ne ldermead con f igure (nm, ”−simplex0length” , 0 . 1 ) ;
nm = ne ldermead con f igure (nm, ”−method” ,”variable” ) ;
nm = ne ldermead con f igure (nm, ”−verbose” , 1 ) ;
nm = ne ldermead con f igure (nm, ”−function” , rosenbrock ) ;
nm = neldermead search (nm) ;
xopt = neldermead get (nm, ”−xopt”)
fopt = neldermead get (nm, ”−fopt”)
s t a tu s = neldermead get (nm, ”−status”)
nm = neldermead destroy (nm) ;

This produces the following output.
−−>nm = neldermead search (nm) ;
Function Evaluat ion #1 i s [ 2 4 . 2 ] at [−1.2 1 ]
Function Evaluat ion #1 i s [ 2 4 . 2 ] at [−1.2 1 ]
Function Evaluat ion #2 i s [ 8 . 8 2 ] at [−1.1 1 ]
Function Evaluat ion #3 i s [ 1 6 . 4 ] at [−1.2 1 . 1 ]
Step #1 : order
=================================================================
I t e r a t i o n #1 ( t o t a l = 1)
Function Eval #3
Xopt : −1.1 1
Fopt : 8 .820000 e+000
DeltaFv : 1 .538000 e+001
Center : −1.1666667 1.0333333
S i z e : 1 .414214 e−001
Vertex #1/3 : fv =8.820000 e+000 , x=−1.100000e+000 1.000000 e+000
Vertex #2/3 : fv =1.640000 e+001 , x=−1.200000e+000 1.100000 e+000
Vertex #3/3 : fv =2.420000 e+001 , x=−1.200000e+000 1.000000 e+000
Re f l e c t
xbar=−1.15 1 .05
Function Evaluat ion #4 i s [ 5 . 6 2 ] at [−1.1 1 . 1 ]
xr=[−1.1 1 . 1 ] , f ( xr )=5.620000
Expand
Function Evaluat ion #5 i s [ 4 . 4 2 8 1 25 ] at [−1.05 1 . 1 5 ]
xe=−1.05 1 .15 , f ( xe )=4.428125
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> Perform Expansion
Sort
[ . . . ]

=================================================================
I t e r a t i o n #56 ( t o t a l = 56)
Function Eval #98
Xopt : 0 .6537880 0.4402918
Fopt : 1 .363828 e−001
DeltaFv : 1 .309875 e−002
Center : 0 .6788120 0.4503999
S i z e : 6 .945988 e−002
Vertex #1/3 : fv =1.363828e−001 , x=6.537880e−001 4.402918 e−001
Vertex #2/3 : fv =1.474625e−001 , x=7.107987e−001 4.799712 e−001
Vertex #3/3 : fv =1.494816e−001 , x=6.718493e−001 4.309367 e−001
Re f l e c t
xbar =0.6822933 0.4601315
Function Evaluat ion #99 i s [ 0 . 1 0 33237 ] at [ 0 . 6927374 0 .4893262 ]
xr =[0.6927374 0 .4893262 ] , f ( xr )=0.103324
Expand
Function Evaluat ion #100 i s [ 0 . 1 459740 ] at [ 0 .7031815 0 .5185210 ]
xe=0.7031815 0 .5185210 , f ( xe )=0.145974
> Perform r e f l e c t i o n

Sort
=================================================================
I t e r a t i o n #57 ( t o t a l = 57)
Function Eval #100
Xopt : 0 .6927374 0.4893262
Fopt : 1 .033237 e−001
DeltaFv : 4 .413878 e−002
Center : 0 .6857747 0.4698631
S i z e : 6 .262139 e−002
Vertex #1/3 : fv =1.033237e−001 , x=6.927374e−001 4.893262 e−001
Vertex #2/3 : fv =1.363828e−001 , x=6.537880e−001 4.402918 e−001
Vertex #3/3 : fv =1.474625e−001 , x=7.107987e−001 4.799712 e−001
Terminate with s ta tu s : maxfuneval
−−>xopt = neldermead get (nm, ”−xopt”)

xopt =

0.6927374
0.4893262

−−>f opt = neldermead get (nm, ”−fopt”)
fopt =

0.1033237

−−>s t a tu s = neldermead get (nm, ”−status”)
s t a tu s =

maxfuneval

1.4 Help, demonstrations and unit tests

For a complete presentation of the functions and options, the reader should consult the help
which is provided with the component. The main menu of the help associated with the opti-
mization module is presented in figures 1.1 and 1.2. The corresponding pages provide a complete
documentation for the corresponding functions, as well as many sample uses.

Several demonstrations are provided with the component. These are available from the
”Demonstration” menu of the Scilab console and are presented in figure 1.3.

The following script shows where the demonstration scripts are available from the Scilab
installation directory.
−−>cd SCI/modules/ opt imizat ion /demos/neldermead

ans =

D:\Programs\SCFD8E˜1\modules\ opt imizat ion \demos\neldermead

−−> l s ∗ . s c e
ans =

! nmplot rosenbrock . s ce !
! !
! nmplot rosenbrock . f i x ed . sce !
! !
! nmplot quadrat ic . f i x ed . sce !
! !
! nmplot mckinnon2 . sce !
! !
! nmplot mckinnon . sce !
! !
! nmplot han2 . sce !
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Figure 1.1: Built-in help for the Nelder-Mead component

Figure 1.2: Built-in help for the fminsearch function
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Figure 1.3: Built-in demonstration scripts for the Nelder-Mead component
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! !
! nmplot han1 . sce !
! !
! nmplot boxproblemA . sce !
! !
! ne ldermead rosenbrock . sce !
! !
! neldermead . dem . sce !
! !
! fminsearch . sce !

These components were developped based on unit tests, which are provided with Scilab. These
unit tests are located in the ”SCI/modules/optimization/tests/unit tests” directory, under the
”neldermead”, ”optimsimplex” and ”optimbase” directories. Each unit test correspond to a .tst
file. These tests are covering most (if not all) the features provided by the components. This is
why there are a good source of information on how to use the functions.
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Chapter 2

Simplex theory

In this section, we present the various definitions connected to simplex algorithms. We introduce
several methods to measure the size of a simplex, including the oriented length. We present
several methods to compute an initial simplex, that is, the regular simplex used by Spendley et
al., the axis-by-axis simplex, Pfeffer’s simplex and the randomized bounds simplex.

2.1 The simplex

Definition 2.1.1 ( Simplex) A simplex S in Rn is the convex hull of n + 1 vertices, that is, a
simplex S = {vi}i=1,n+1 is defined by its n+ 1 vertices vi ∈ Rn for i = 1, n+ 1.

The j-th coordinate of the i-th vertex vi ∈ Rn is denoted by (vi)j ∈ R.
Box extended the Nelder-Mead algorithm to handle bound and non linear constraints [5]. To

be able to manage difficult cases, he uses a complex made of m ≥ n+ 1 vertices.

Definition 2.1.2 ( Complex) A complex S in Rn is a set of m ≥ n+1 vertices, that is, a simplex
S = {vi}i=1,m is defined by its m vertices vi ∈ Rn for i = 1,m.

In this chapter, we will state clearly when the definition and results can only be applied to a
simplex or to a more general a complex.

We assume that we are given a cost function f : Rn → R. Each vertex vi is associated with a
function value

fi = f(vi) for i = 1,m. (2.1)

For any complex, the vertices can be sorted by increasing function values

f1 ≤ f2 ≤ . . . ≤ fn ≤ fm. (2.2)

The sorting order is not precisely defined neither in Spendley’s et al paper [45] nor in Nelder
and Mead’s [31]. In [21], the sorting rules are defined precisely to be able to state a theoretical
convergence result. In practical implementations, though, the ordering rules have no measurable
influence.

14



2.2 The size of the complex

Several methods are available to compute the size of a complex.
In this section, we use the euclidian norm ‖.‖2 the defined by

‖v‖2 =
∑
j=1,n

(vj)
2. (2.3)

Definition 2.2.1 ( Diameter) The simplex diameter diam(S) is defined by

diam(S) = max
i,j=1,m

‖vi − vj‖2. (2.4)

In practical implementations, computing the diameter requires two nested loops over the
vertices of the simplex, i.e. requires m2 operations. This is why authors generally prefer to use
lengths which are less expensive to compute.

Definition 2.2.2 ( Oriented length) The two oriented lengths σ−(S) and σ+(S) are defined by

σ+(S) = max
i=2,m

‖vi − v1‖2 and σ−(S) = min
i=2,m

‖vi − v1‖2. (2.5)

Proposition 2.2.3 The diameter and the maximum oriented length satisfy the following inequal-
ities

σ+(S) ≤ diam(S) ≤ 2σ+(S). (2.6)

Proof We begin by proving that

σ+(S) ≤ diam(S). (2.7)

This is directly implied by the inequality

max
i=2,m

‖vi − v1‖2 ≤ max
i=1,m

‖vi − v1‖2 (2.8)

≤ max
i,j=1,m

‖vi − vj‖2, (2.9)

which concludes the first part of the proof. We shall now proove the inequality

diam(S) ≤ 2σ+(S). (2.10)

We decompose the difference vi − vj into

vi − vj = (vi − v1) + (v1 − vj). (2.11)

Hence,

‖vi − vj‖2 ≤ ‖vi − v1‖2 + ‖v1 − vj‖2. (2.12)

We take the maximum over i and j, which leads to

max
i,j=1,m

‖vi − vj‖2 ≤ max
i=1,m

‖vi − v1‖2 + max
j=1,m

‖v1 − vj‖2 (2.13)

≤ 2 max
i=1,m

‖vi − v1‖2. (2.14)

With the definitions of the diameter and the oriented length, this immediately prooves the in-
equality 2.10.
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In Nash’s book [27], the size of the simplex sN(S) is measured based on the 1-norm and is
defined by

sN(S) =
∑
i=2,m

‖vi − v1‖1 (2.15)

where the 1-norm is defined by

‖vi‖1 =
∑
j=1,n

|(vi)j|. (2.16)

The optimsimplex size function provides all these size algorithms. In the following example,
we create an axis-by-axis simplex with length unity and compute its length by several methods.
xx0 = [ 0 . 0 0 . 0 ] ;
s i = optimsimplex new ( ”axes” , x0 ) ;
method l i s t = [
”sigmaplus”
”sigmaminus”
”Nash”
”diameter”
] ;
for i = 1 : s ize ( methodl i st , ”∗”)

m = method l i s t ( i ) ;
s s = opt ims imp l ex s i z e ( s i , m ) ;
mprintf ( ”%s: %f\n” , m , s s ) ;

end
opt ims implex dest roy ( s i )

The previous script produces the following output.
s igmaplus : 1 .000000
sigmaminus : 1 .000000
Nash : 2 .000000
diameter : 1 .414214

We check that the diameter is equal to diam(S) =
√

2. We see that inequality 2.6 is satisfied
since σ+(S) = 1 ≤

√
2 ≤ 2 = 2σ+(S).

2.3 The initial simplex

While most of the theory can be developed without being very specific about the initial simplex,
it plays a very important role in practice. All approaches are based on the initial guess x0 ∈ Rn

and create a geometric shape based on this point.
In this section, we present the various approach to design the initial simplex. In the first part,

we emphasize the importance of the initial simplex in optimization algorithms. Then we present
the regular simplex by Spendley et al., the axis-by-axis simplex, the randomized bounds approach
by Box and Pfeffer’s simplex.

2.3.1 Importance of the initial simplex

The initial simplex is particularily important in the case of Spendley’s et al method, where the
shape of the simplex is fixed during the iterations. Therefore, the algorithm can only go through
points which are on the pattern defined by the initial simplex. The pattern presented in figure
2.1 is typical a fixed-shape simplex algorithm (see [48], chapter 3, for other patterns of a direct
search method). If, by chance, the pattern is so that the optimum is close to one point defined
by the pattern, the number of iteration may be small. On the contrary, the number of iterations
may be large if the pattern does not come close to the optimum.
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Figure 2.1: Typical pattern with fixed-shape Spendley’s et al algorithm

The variable-shape simplex algorithm designed by Nelder and Mead is also very sensitive to
the initial simplex. One of the problems is that the initial simplex should be consistently scaled
with respect to the unknown x. In ”An investigation into the efficiency of variants on the simplex
method” [35], Parkinson and Hutchinson explored several improvements of Nelder and Mead’s
algorithm. First, they investigate the sensitivity of the algorithm to the initial simplex. Two
parameters were investigated, that is, the initial length and the orientation of the simplex. The
conclusion of their study with respect to the initial simplex is the following. ”The orientation of
the initial simplex has a significant effect on efficiency, but the relationship can be too sensitive
for an automatic predictor to provide sufficient accuracy at this time.”

Since no initial simplex clearly improves on the others, in practice, it may be convenient to
try different approaches.

2.3.2 Spendley’s et al regular simplex

In their paper [45], Spendley, Hext and Himsworth use a regular simplex with given size ` > 0.
We define the parameters p, q > 0 as

p =
1

n
√

2

(
n− 1 +

√
n+ 1

)
, (2.17)

q =
1

n
√

2

(√
n+ 1− 1

)
. (2.18)

We can now define the vertices of the simplex S = {xi}i=1,n+1. The first vertex of the simplex is
the initial guess

v1 = x0. (2.19)

The other vertices are defined by

(vi)j =

{
(x0)j + `p, if j = i− 1,
(x0)j + `q, if j 6= i− 1,

(2.20)
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Figure 2.2: Regular simplex in 2 dimensions

for vertices i = 2, n + 1 and components j = 1, n, where ` ∈ R is the length of the simplex and
satisfies ` > 0. Notice that this length is the same for all the edges which keeps the simplex
regular.

The regular simplex is presented in figure 2.2.
In the following Scilab session, we define a regular simplex with the optimsimplex new func-

tion.
x0 = [ 0 . 0 0 . 0 ] ;
s i = optimsimplex new ( ”spendley” , x0 ) ;
method l i s t = [
”sigmaplus”
”sigmaminus”
”diameter”
] ;
for i = 1 : s ize ( methodl i st , ”∗”)

m = method l i s t ( i ) ;
s s = opt ims imp l ex s i z e ( s i , m ) ;
mprintf ( ”%s: %f\n” , m , s s ) ;

end
opt ims implex dest roy ( s i ) ;

The previous script produces the following output.
s igmaplus : 1 .000000
sigmaminus : 1 .000000
diameter : 1 .000000

We check that the three sizes diam(S), σ+(S) and σ−(S) are equal, as expected from a regular
simplex.

2.3.3 Axis-by-axis simplex

A very efficient and simple approach leads to an axis-by-axis simplex. This simplex depends on
a vector of positive lengths l ∈ Rn. The first vertex of the simplex is the initial guess

v1 = x0. (2.21)

The other vertices are defined by

(vi)j =

{
(x0)j + `j, if j = i− 1,
(x0)j, if j 6= i− 1,

(2.22)
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Figure 2.3: Axis-based simplex in 2 dimensions – Notice that the length along the x axis is 1
while the length along the y axis is 2.

for vertices i = 2, n+ 1 and components j = 1, n.
This type of simplex is presented in figure 2.3, where `1 = 1 and `2 = 2. The axis-by-axis

simplex is used in the Nelder-Mead algorithm provided in Numerical Recipes in C [39]. As stated
in [39], the length vector l can be used as a guess for the characteristic length scale of the problem.

2.3.4 Randomized bounds

Assume that the variable x ∈ Rn is bounded so that

mj ≤ xj ≤Mj, (2.23)

for j = 1, n, where mj,Mj ∈ R are minimum and maximum bounds and mj ≤ Mj. A method
suggested by Box in [5] is based on the use of pseudo-random numbers. Let {θi,j}i=1,n+1,j=1,n ∈
[0, 1] be a sequence of random numbers uniform in the interval [0, 1]. The first vertex of the
simplex is the initial guess

v1 = x0. (2.24)

The other vertices are defined by

(vi)j = mj + θi,j(Mj −mj), (2.25)

for vertices i = 2, n+ 1 and components j = 1, n.

2.3.5 Pfeffer’s method

This initial simplex is used in the function fminsearch and presented in [8]. According to [8], this
simplex is due to L. Pfeffer at Stanford. The goal of this method is to scale the initial simplex
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with respect to the characteristic lengths of the problem. This allows, for example, to manage
cases where x1 ≈ 1 and x2 ≈ 105. As we are going to see, the scaling is defined with respect to
the initial guess x0, with an axis-by-axis method.

The method proceeds by defining δu, δz > 0, where δu is used for usual components of x0 and
δz is used for the case where one component of x0 is zero. The default values for δu and δz are

δu = 0.05 and δz = 0.0075. (2.26)

The first vertex of the simplex is the initial guess

v1 = x0. (2.27)

The other vertices are defined by

(vi)j =


(x0)j + δu(x0)j, if j = i− 1 and (x0)j−1 6= 0,
δz, if j = i− 1 and (x0)j−1 = 0,
(x0)j, if j 6= i− 1,

(2.28)

for vertices i = 2, n+ 1 and components j = 1, n.

2.4 The simplex gradient

In this section, we present the simplex gradient and proove that this gradient is an approximation
of the gradient of the objective function, provided that the condition of the matrix of simplex
directions. We derive the forward simplex gradient.

2.4.1 Matrix of simplex directions

We consider here simplices made of m = n + 1 vertices only. This allows to define the matrix of
simplex directions as presented in the following definition.

Definition 2.4.1 ( Matrix of simplex directions) Assume that S is a set of m = n + 1 vertices.
The n× n matrix of simplex directions D(S) is defined by

D(S) = (v2 − v1,v2 − v1, . . . ,vn+1 − v1). (2.29)

We define by {di}i=1,n the columns of the n× n matrix D(S), i.e.

D(S) = (d1,d2, . . . ,dn). (2.30)

We say that the simplex S is nonsingular if the matrix D(S) is nonsingular. We define the
simplex condition as the l2 condition number of the matrix of simplex directions κ(D(S)).

The directions di can be seen as offsets, leading from the first vertex to each vertex vi, i.e.

vi = v1 + d1, for i = 1, n. (2.31)
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Figure 2.4: A ”flat” simplex in 2 dimensions

Example (A non degenerate simplex ) Consider the axis-by-axis simplex, with first vertex at
origin and lengths unity. The vertices are defined by

v1 = (0, 0)T , v2 = (1, 0)T , v3 = (0, 1)T , (2.32)

so that the matrix of simplex directions is given by

D =

(
1 0
0 1

)
. (2.33)

Such a matrix has a unity condition number.
The following Scilab session uses the optimsimplex component to generate a axis-by-axis sim-

plex and computes the matrix of directions with the optimsimplex dirmat function.
x0 = [ 0 . 0 0 . 0 ] ;
s i = optimsimplex new ( ”axes” , x0 ) ;
D = optimsimplex dirmat ( s i )
k = cond(D)
opt ims implex dest roy ( s i )

The previous script produces the following output.
−−>D = optimsimplex dirmat ( s i )

D =
1 . 0 .
0 . 1 .

−−>k = cond(D)
k =

1 .

We check that an axis-by-axis simplex has a very low condition number. �

Example (A degenerate simplex ) In this example, we show that a flat simplex is associated with
a high condition number. Consider a flat simplex, defined by its vertices:

v1 = (0, 0)T , v2 = (1, 0)T , v3 = (1/2, ε)T , (2.34)

with ε = 10−10. This simplex is presented in figure 2.4.
coords = [
0 .0 0 .0
1 .0 0 .0
0 .5 1 . e−10
] ;
s i = optimsimplex new ( coords ) ;
D = optimsimplex dirmat ( s i )
k = cond(D)
opt ims implex dest roy ( s i ) ;

The previous script produces the following output.
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−−>D = optimsimplex dirmat ( s i )
D =

1 . 0 .5
0 . 1 .000D−10

−−>k = cond(D)
k =

1.250D+10

We see that a flat simplex is associated with a high condition number. Indeed, a low condition
number of the matrix of directions is an indication of the non-degeneracy of the simplex. �

There is a close relationship between the oriented length σ+(S) and the l2 norm of the matrix
of directions D(S) as prooved in the following proposition.

Proposition 2.4.2 Let S be a simplex and consider the euclidian norm ‖.‖. Therefore,

‖di‖ ≤ σ+(S) ≤ ‖D‖, (2.35)

for all i = 1, . . . , n.

Proof It is easy to prove that

‖di‖ ≤ σ+(S). (2.36)

Indeed, the definition of the oriented length σ+(S) in the case where there are n+ 1 vertices is

σ+(S) = max
i=2,n+1

‖vi − v1‖2 (2.37)

= max
i=1,n
‖di‖2, (2.38)

which concludes the first part of the proof.
We shall now proove that

σ+(S) ≤ ‖D‖. (2.39)

The euclidian norm is so that ([11], section 2.3.1, ”Definitions”),

‖Dx‖ ≤ ‖D‖‖x‖, (2.40)

for any vector x ∈ Rn. We choose the specific vector x which has zeros components, except for
the i-th row, which is equal to 1, i.e. x = (0, . . . , 0, 1, 0, . . . , 0)T . With this particular choice of x
we have the properties Dx = di and ‖x‖ = 1, so that the previous inequality becomes

‖di‖ ≤ ‖D‖, (2.41)

for all i = 1, . . . , n. We can now take the maximum of the left hand-size of 2.41 and get the
oriented length σ+(S), which concludes the proof.

Example In the following Scilab session, we define a new simplex by its coordinates, so that the
matrix of directions is not symetric and that the edges do not have unit lengths.
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coords = [
0 .0 0 .0
1 .0 0 .5
1 .0 2 .0
] ;
s i = optimsimplex new ( coords ) ;
D = optimsimplex dirmat ( s i )
for i =1:2

nd = norm(D(1 : 2 , i ) , 2 ) ;
mprintf ( ” | | d %d| |=%f\n” , i , nd )

end
s s = opt ims imp l ex s i z e ( s i , ”sigmaplus” ) ;
mprintf ( ”sigma +(S)=%f\n” , s s ) ;
normmatrix = norm(D) ;
mprintf ( ” | |D| |=%f\n” , normmatrix ) ;
opt ims implex dest roy ( s i ) ;

The previous script produces the following output.
| | d 1 | |=1.118034
| | d 2 | |=2.236068
sigma +(S)=2.236068
| |D| |=2.422078

This result is consistent with the inequality 2.35. �

2.4.2 Taylor’s formula

The simplex gradient proposition that we shall proove in the next section assumes that the
gradient g of the function f satisfies a Lipshitz condition. The following proposition presents
a result satisfied by such functions. In order to simplify the notations, we denote by ‖.‖ the
euclidian norm.

Proposition 2.4.3 Assume that f : Rn → R is differentiable and assume that its gradient g is
defined and continuous. Let x ∈ Rn be a given point and p ∈ Rn a vector. Assume that the
gradient g is Lipshitz continuous in a neighbourhood of x and x + p with Lipshitz constant L.
Then

|f(x + p)− f(x)− pTg(x)| ≤ 1

2
L‖p‖2. (2.42)

Proof We can write Taylor’s expansion of f in a neighbourhood of x

f(x + p) = f(x) +

∫ 1

0

pTg(x + tp)dt. (2.43)

By definition of the Lipshitz condition on g, we have

‖g(x)− g(y)‖ ≤ L‖x− y‖, (2.44)

for x and y in that neighbourhood. Assume that t ∈ [0, 1] and use the particular point y = x+tp.
We get

‖g(x + tp)− g(x)‖ ≤ tL‖p‖. (2.45)

We now use equality 2.43, substract the term pTg(x) and get

f(x + p)− f(x)− pTg(x) =

∫ 1

0

pT (g(x + tp)− g(x)) dt. (2.46)
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Therefore,

∣∣f(x + p)− f(x)− pTg(x)
∣∣ =

∣∣∣∣∫ 1

0

pT (g(x + tp)− g(x)) dt

∣∣∣∣ (2.47)

≤
∫ 1

0

‖p‖ ‖g(x + tp)− g(x)‖ dt (2.48)

We plug 2.45 into the previous equality and get

∣∣f(x + p)− f(x)− pTg(x)
∣∣ ≤ ∫ 1

0

Lt‖p‖2dt (2.49)

≤ 1

2
L‖p‖2, (2.50)

which concludes the proof.

2.4.3 Forward difference simplex gradient

Finite difference formulas are a common tool to compute the numerical derivative of a function.
In this section, we introduce the simplex gradient, which allows to compute an approximation of
the gradient of the cost function. As we are going to see, this approximation is more accurate
when the simplex has a low condition number.

We denote by δ(S) the vector of objective function differences

δ(S) = (f(v2)− f(v1), f(v3)− f(v1), . . . , f(vn+1)− f(v1))
T . (2.51)

As with classical finite difference formulas, the vector of function can be used to compute the
simplex gradient.

Definition 2.4.4 ( Simplex gradient) Let S be a non singular simplex. The simplex gradient
g(S) is the unique solution of the linear system of equations

D(S)Tg(S) = δ(S). (2.52)

By hypothesis, the simplex S is nonsingular so that the linear system of equations has a unique
solution, which is equal to

g(S) = (D(S)T )−1δ(S). (2.53)

By hypothesis, the matrix D(S) is non singular, therefore the transpose of the inverse is equal to
the inverse of the transpose ([11], section 2.1.3, ”Matrix Inverse”), i.e. (D(S)T )−1 = (D(S)−1)T .
We denote by D(S)−T the inverse of the transpose so that the previous equality becomes

g(S) = D(S)−T δ(S). (2.54)

In practice, the matrix of simplex direction is not inverted and the solution of 2.52 is computed
directly, using classical linear algebra libraries, like Lapack for example.

The simplex gradient is an approximation of the gradient g of the function f , as presented in
the following proposition.
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Proposition 2.4.5 Let S be a simplex. Let the gradient g be Lipshitz continuous in a neighbour-
hood of S with Lipshitz constant L. Consider the euclidian norm ‖.‖. Then, there is a constant
K > 0, depending only on L such that

‖g(v1)− g(S)‖2 ≤ Kκ(S)σ+(S). (2.55)

Proof We can write the difference between the simplex gradient and the gradient in the following
form

g(S)− g(v1) = D(S)−T
(
D(S)Tg(S)−D(S)Tg(v1)

)
. (2.56)

We now plug the simplex gradient definition 2.52 into the previous equality and get

g(S)− g(v1) = D(S)−T
(
δ(S)−D(S)Tg(v1)

)
. (2.57)

The fact that the euclidian norm ‖.‖ satisfies the inequality

‖AB‖ ≤ ‖A‖‖B‖, (2.58)

for any matrices A and B with suitable number of rows and columns ([11], section 2.3, ”Matrix
Norms”) plays an important role in the results that we are going to derive. Indeed, we can
compute the euclidian norm of both sides of equation 2.57 and get

‖g(S)− g(v1)‖ =
∥∥D(S)−T

(
δ(S)−D(S)Tg(v1)

)∥∥ . (2.59)

Therefore,

‖g(S)− g(v1)‖ ≤
∥∥D(S)−T

∥∥∥∥δ(S)−D(S)Tg(v1)
∥∥ . (2.60)

The suite of the proof is based on the computation of the right-hand side of equation 2.60, that
is, the computation of the norm of the vector δ(S)−D(S)Tg(v1).

By hypothesis, the gradient g is Lipshitz continuous in a neighbourhood of S. By proposition
2.4.3, we have ∣∣f(v1 + di)− f(v1)− dTi g(v1)

∣∣ ≤ 1

2
L‖di‖2, (2.61)

for i = 1, n. By definition of the direction di, we have v1 + di = vi for i = 1, n. By proposition
2.4.2, we have ‖dj‖ ≤ σ+(S) for all j = 1, n. Hence,∣∣f(vi)− f(v1)− dTi g(v1)

∣∣ ≤ 1

2
Lσ+(S)2, (2.62)

We can use this to compute the euclidian norm of the vector δ(S) −DTg(v1). Using ineguality
2.62, the square of the norm of this vector is∥∥δ(S)−DTg(v1)

∥∥2
=

∑
i=1,n

(
f(vi)− f(v1)− dTi g(v1)

)2
(2.63)

≤
∑
i=1,n

(
1

2
Lσ+(S)2

)2

(2.64)

≤ n

(
1

2
Lσ+(S)2

)2

(2.65)
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which finally implies ∥∥δ(S)−DTg(v1)
∥∥2 ≤ 1

2

√
nLσ+(S)2. (2.66)

Let us define the constant K = 1
2

√
nL. The previous inequality becomes∥∥δ(S)−DTg(v1)

∥∥2 ≤ Kσ+(S)2. (2.67)

We can now plug the previous equality into inequality 2.60 and get

‖g(S)− g(v1)‖ ≤ K
∥∥D(S)−T

∥∥σ+(S)2. (2.68)

By proposition 2.4.2, we have σ+(S) ≤ ‖D‖, so that the previous inequality is transformed into

‖g(S)− g(v1)‖ ≤ K
∥∥D(S)−T

∥∥ ‖D(S)‖σ+(S). (2.69)

The l2 norm of the matrix D(S) is the largest eigenvalue of the matrix D(S)TD(S), so that
the norm is not affected by transposition, which implies that

∥∥D(S)−T
∥∥ = ‖D(S)−1‖. The

condition number of the matrix of direction κ(S) is equal to ‖D(S)−1‖ ‖D(S)‖ ([11], section
2.7.2, ”Condition”), which concludes the proof.

Example (Simplex gradient with a non-degenerate simplex ) In the following Scilab session, we
define the function f(x) = x2

1 + x2
2, where x ∈ R2. The exact gradient of this function is

g = (x1, x2)
T . We create an axis-by-axis simplex based on the relatively small length ` = 10−3.

This simplex defines a rectangular triangle, similar to the one presented in figure 2.3, but with
smaller edges.
function y = myfunction ( x )

y = x (1)ˆ2 + x (2)ˆ2
endfunction
x0 = [ 1 . 0 1 . 0 ] ;
l en = 1 . e−3;
s i = optimsimplex new ( ”axes” , x0 , myfunction , l en ) ;
sg = opt ims implex grad i ent fv ( s i ) ;
mprintf ( ”Simplex Gradient=(%f %f)ˆT\n” , sg ( 1 ) , sg ( 2 ) ) ;
eg = [2 ∗ x0 (1) 2 ∗ x0 ( 2 ) ] . ’ ;
mprintf ( ”Exact Gradient=(%f %f)ˆT\n” , eg (1 ) , eg ( 2 ) ) ;
e r r = norm( sg−eg )/norm( eg ) ;
mprintf ( ”Relative Error = %e\n” , e r r ) ;
e r r = norm( sg−eg ) ;
mprintf ( ”Absolute Error = %e\n” , e r r ) ;
D = optimsimplex dirmat ( s i ) ;
k = cond(D) ;
mprintf ( ”k(D)=%f\n” , k ) ;
s s = opt ims imp l ex s i z e ( s i ) ;
mprintf ( ”sigma +(D)=%e\n” , s s ) ;
opt ims implex dest roy ( s i ) ;

The previous script produces the following output.
Simplex Gradient =(2.001000 2 .001000)ˆT
Exact Gradient =(2.000000 2 .000000)ˆT
Absolute Error = 1.414214 e−003
k (D)=1.000000
sigma +(D)=1.000000 e−003

We check that the inequality 2.55 gives an accurate measure of the approximation. Indeed, since
the Lipshitz constant for the gradient g is L = 2, we have the constant K =

√
2. �

Example (Simplex gradient with a simplex close to degenerate) We consider what happens when
an axis-by-axis simplex is transformed into a degenerate simplex. This situation is presented in
figure 2.5, where the third vertex moves on a circle with radius 0.5.10−3 toward the center of an
edge. Therefore the simplex degenerates and its condition number increases dramatically.
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Figure 2.5: An axis-by-axis simplex which degenerates into a ”flat” simplex in 2 dimensions.

θ (̊) σ+(S) ‖g(S)− g(v1)‖ κ(S)
90.000000 1.000000e-003 1.118034e-003 2.000000e+000
10.000000 1.000000e-003 2.965584e-003 1.432713e+001
1.000000 1.000000e-003 2.865807e-002 1.432397e+002
0.100000 1.000000e-003 2.864799e-001 1.432395e+003
0.010000 1.000000e-003 2.864789e+000 1.432394e+004
0.001000 1.000000e-003 2.864789e+001 1.432394e+005

In the following Scilab script, we create a simplex as presented in figure 2.5. We use decreasing
values of the angle θ between the two directions, starting from θ = 90 (̊) and going down to
θ = 0.001 (̊). Then we compute the gradient and the absolute error, as well as the condition
number and the size of the simplex.
R = 0.5 e−3
coords = [

1 .0 1 .0
1.0+1. e−3 1 .0

] ;
for theta = [ 9 0 . 0 10 .0 1 .0 0 .1 0 .01 0 . 0 0 1 ]

C(1 ,1 ) = 1 .0 + R ∗ cos ( theta ∗%pi /180) ;
C(1 ,2 ) = 1 .0 + R ∗ sin ( theta ∗%pi /180) ;
coords ( 3 , 1 : 2 ) = C;
s i = optimsimplex new ( coords , myfunction ) ;
sg = opt ims implex grad i ent fv ( s i ) ;
eg = [2 ∗ x0 (1) 2 ∗ x0 ( 2 ) ] . ’ ;
e r r = norm( sg−eg ) ;
D = optimsimplex dirmat ( s i ) ;
k = cond(D) ;
s s = opt ims imp l ex s i z e ( s i ) ;
mprintf ( ”%f %e %e %e\n” , theta , s s , e r r , k ) ;
opt ims implex dest roy ( s i ) ;

end

The results are presented in table 2.4.3.
We see that while the oriented length σ+(S) is constant, the simplex gradient is more and

more inaccurate as the condition number κ(S) is increasing. �

2.5 References and notes

The section 2.4.3 and some elements of the section 2.2 are taken from Kelley’s book [20], ”Iterative
Methods for Optimization”. While this book focus on Nelder-Mead algorithm, Kelley gives a
broad view on optimization and present other algorithms for noisy functions, like implicit filtering,
multidirectional search and the Hooke-Jeeves algorithm.
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The section 2.4.2, which present Taylor’s formula with a Lisphitz continous gradient is based
on [17], ”Elements of Analysis, Geometry, Topology”, section ”Mean Value Theorem”.
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Chapter 3

Spendley’s et al. method

In this chapter, we present Spendley, Hext and Himsworth algorithm [45] for unconstrained opti-
mization.

We begin by presenting a global overview of the algorithm. Then we present various geometric
situations which might occur during the algorithm. In the second section, we present several
numerical experiments which allow to get some insight in the behavior of the algorithm on some
simple situations. The two first cases are involving only 2 variables and are based on a quadratic
function. The last numerical experiment explores the behavior of the algorithm when the number
of variables increases.

3.1 Introduction

In this section, we present Spendley’s et al algorithm for unconstrained optimization. This algo-
rithm is based on the iterative update of a simplex. At each iteration, either a reflection of a shrink
step is performed, so that the shape of the simplex does not change during the iterations. Then
we present various geometric situations which might occur during the algorithm. This allows to
understand when exactly a reflection or a shrink is performed in practice.

3.1.1 Overview

The goal of Spendley’s et al. algorithm is to solve the following unconstrained optimization
problem

min f(x) (3.1)

where x ∈ Rn, n is the number of optimization parameters and f is the objective function
f : Rn → R.

This algorithms is based on the iterative update of a simplex made of n + 1 points S =
{vi}i=1,n+1. Each point in the simplex is called a vertex and is associated with a function value
fi = f(vi) for i = 1, n+ 1.

The vertices are sorted by increasing function values so that the best vertex has index 1 and
the worst vertex has index n+ 1

f1 ≤ f2 ≤ . . . ≤ fn ≤ fn+1. (3.2)
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The v1 vertex (resp. the vn+1 vertex) is called the best vertex (resp. worst), because it is
associated with the lowest (resp. highest) function value. As we are going to see, the next-to-worst
vertex vn has a special role in this algorithm.

The centroid of the simplex x(j) is the center of the vertices where the vertex vj has been
excluded. This centroid is

x(j) =
1

n

∑
i=1,n+1,i 6=j

vi. (3.3)

The algorithm makes use of one coefficient ρ > 0, called the reflection factor. The standard value
of this coefficient is ρ = 1. The algorithm attempts to replace some vertex vj by a new vertex
x(ρ, j) on the line from the vertex vj to the centroid x(j). The new vertex x(ρ, j) is defined by

x(ρ, j) = (1 + ρ)x(j)− ρvj. (3.4)

3.1.2 Algorithm

In this section, we analyze Spendley’s et al algorithm, which is presented in figure 3.1.

Compute an initial simplex S0

Sorts the vertices S0 with increasing function values
S ← S0

while σ(S) > tol do
x← x(n+ 1) {Compute the centroid}
xr ← x(ρ, n+ 1) {Reflect with respect to worst}
fr ← f(xr)
if fr < fn+1 then

Accept xr
else
x← x(n) {Compute the centroid}
x′r ← x(ρ, n) {Reflect with respect to next-to-worst}
f ′r ← f(x′r)
if f ′r < fn+1 then

Accept x′r
else

Compute the vertices vi = v1 + σ(vi − v1) for i = 2, n+ 1 {Shrink}
Compute fi = f(vi) for i = 2, n+ 1

end if
end if
Sort the vertices of S with increasing function values

end while

Figure 3.1: Spendley’s et al. algorithm

At each iteration, we compute the centroid x(n + 1) where the worst vertex vn+1 has been
excluded. This centroid is

x(n+ 1) =
1

n

∑
i=1,n

vi. (3.5)

30



R

H

L

N R = Reflection #1
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N = Next to highest

Shrink

R2 = Reflection #2
R2

Figure 3.2: Spendley et al. simplex moves

We perform a reflection with respect to the worst vertex vn+1, which creates the reflected point
xr defined by

xr = x(ρ, n+ 1) = (1 + ρ)x(n+ 1)− ρvn+1 (3.6)

We then compute the function value of the reflected point as fr = f(xr). If the function value
fr is better than the worst function value fn+1, i.e. if fr < fn+1, then the worst vertex vn+1 is
rejected from the simplex and the reflected point xr is accepted. If the reflection point does not
improve the function value fn+1, we consider the centroid x(n), i.e. the centroid where the next-
to-worst vertex vn has been excluded. We then consider the reflected point x′r, computed from
the next-to-worst vertex vn and the centroid x(n). We compute the function value f ′r = f(x′r).
If the function value f ′r improves over the worst function value fn+1, then the worst vertex vn+1

is rejected from the simplex and the new reflection point x′r is accepted.
At that point of the algorithm, neither the reflection with respect to vn+1 nor the reflection with

respect to vn were able to improve over the worst function value fn+1. Therefore, the algorithm
shrinks the simplex toward the best vertex v1. That last step uses the shrink coefficient 0 < σ < 1.
The standard value for this coefficient is σ = 1

2
.

3.1.3 Geometric analysis

The figure 3.2 presents the various moves of the Spendley et al. algorithm. It is obvious from
the picture that the algorithm explores a pattern which is entirely determined from the initial
simplex.

In Spendley’s et al. original paper, the authors use a regular simplex, where the edges all have
the same length. In practice, however, any non degenerate simplex can be used.

The various situations in which these moves are performed are presented in figures 3.3, 3.4
and 3.5.

The basic move is the reflection step, presented in figure 3.3 and 3.4. These two figures show
that Spendley’s et al. algorithm is based on a discretization of the parameter space. The optimum
is searched on that grid, which is based on regular simplices. When no move is possible to improve
the situation on that grid, a shrink step is necessary, as presented in figure 3.5.

In the situation of figure 3.5, neither the reflection #1 or reflection #2 have improved the
simplex. Diminishing the size of the simplex by performing a shrink step is the only possible
move because the simplex has vertices which are located across the valley. This allows to refine
the discretization grid on which the optimum is searched.
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Figure 3.3: Spendley et al. simplex moves – Reflection with respect to highest point
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R = Reflection #1
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N = Next to highest

R2 = Reflection #2
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Figure 3.4: Spendley et al. simplex moves – Reflection with respect to next-to-highest point. It
may happen that the next iteration is a shrink step.

R

H

L

N
R = Reflection #1

H = Highest

L = Lowest

N = Next to highest

R2 = Reflection #2
R2

Figure 3.5: Spendley et al. simplex moves – The shrink step is the only possible move.
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3.1.4 General features of the algorithm

From the performance point of viewn when a reflection step is performed, only 1 or 2 function
evaluations are required. Instead, when a shrink step is performed, there are n function evaluations
required. In practice, reflection steps are performed when the simplex is away from the optimum.
When the simplex is closer to the optimum, or enters in a narrow valley, shrink steps are used.

As stated in [44], the main feature of Spendley’s et al. algorithm is that the simplex can vary
in size, but not in shape. As we are going to see in the numerical experiments, this leads to a slow
convergence when a narrow valley is encountered. In that situation, the shrink steps are required,
which leads to a large number of iterations and function evaluations.

In fact, the Spendley’s et al. algorithm is a pattern search algorithm [47]. This is a consequence
of the fact that the search pattern used in the method is constant. Therefore, the design never
degenerates. As stated in [47], ”under very mild assumptions on f , these simple heuristics provide
enough structure to guarantee global convergence. This is not the case for the Nelder-Mead
algorithm, which might converge to non-stationnary points [23, 15, 13, 48]. In all cases, the
difficulty is that a sequence of simplices produced by the Nelder-Mead simplex method can come
arbitrarily close to degeneracy.

3.2 Numerical experiments

In this section, we present some numerical experiments with Spendley’s et al. algorithm. The first
numerical experiments involves one quadratic function in 2 dimensions. The second experiment
is based on a badly scaled quadratic in 2 dimension. In the third experiment, we analyze the
behavior of the algorithm with respect to the number of variables.

3.2.1 Quadratic function

The function we try to minimize is the following quadratic in 2 dimensions

f(x1, x2) = x2
1 + x2

2 − x1x2. (3.7)

The stopping criteria is based on the relative size of the simplex with respect to the size of
the initial simplex

σ+(S) < tol × σ+(S0). (3.8)

The oriented length σ+(S) is defined by

σ+(S) = max
i=2,n+1

‖vi − v1‖2 (3.9)

where ‖.‖2 is the euclidian norm defined by

‖x‖2 =
∑
i=1,n

x2
i . (3.10)

In this experiment, we use tol = 10−8 as the relative tolerance on simplex size.
The initial simplex is a regular simplex with length unity.
The following Scilab script performs the optimization.
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function y = quadrat i c ( x )
y = x (1)ˆ2 + x (2)ˆ2 − x (1) ∗ x ( 2 ) ;

endfunction
nm = neldermead new ( ) ;
nm = ne ldermead con f igure (nm, ”−numberofvariables” , 2 ) ;
nm = ne ldermead con f igure (nm, ”−function” , quadrat i c ) ;
nm = ne ldermead con f igure (nm, ”−x0” , [ 2 . 0 2 . 0 ] ’ ) ;
nm = ne ldermead con f igure (nm, ”−maxiter” , 1 00 ) ;
nm = ne ldermead con f igure (nm, ”−maxfunevals” , 3 00 ) ;
nm = ne ldermead con f igure (nm, ”−tolxmethod” ,”disabled” ) ;
nm = ne ldermead con f igure (nm, ”−tolsimplexizerelative ” , 1 . e−8);
nm = ne ldermead con f igure (nm, ”−simplex0method” ,”spendley” ) ;
nm = ne ldermead con f igure (nm, ”−method” ,”fixed” ) ;
nm = ne ldermead con f igure (nm, ”−verbose” , 1 ) ;
nm = ne ldermead con f igure (nm, ”−verbosetermination” , 0 ) ;
nm = neldermead search (nm) ;
ne ldermead di sp lay (nm) ;
nm = neldermead destroy (nm) ;

The numerical results are presented in table 3.6.

Iterations 49
Function Evaluations 132
x0 (2.0, 2.0)
Relative tolerance on simplex size 10−8

Exact x? (0., 0.)
Computed x? (2.169e− 10, 2.169e− 10)
Exact f(x?) 0.
Computed f(x?) 4.706e− 20

Figure 3.6: Numerical experiment with Spendley’s et al. method on the quadratic function
f(x1, x2) = x2

1 + x2
2 − x1x2

The various simplices generated during the iterations are presented in figure 3.7. The method
use reflections in the early iterations. Then there is no possible improvement using reflections and
shrinking is necessary. That behavior is an illustration of the discretization which has already
been discussed.

The figure 3.8 presents the history of the oriented length of the simplex. The length is updated
step by step, where each step corresponds to a shrink in the algorithm.

The convergence is quite fast in this case, since less than 60 iterations allow to get a function
value lower than 10−15, as shown in figure 3.9.

3.2.2 Badly scaled quadratic function

The function we try to minimize is the following quadratic in 2 dimensions

f(x1, x2) = ax2
1 + x2

2, (3.11)

where a > 0 is a chosen scaling parameter. The more a is large, the more difficult the problem is
to solve with the simplex algorithm. Indeed, let us compute the Hessian matrix associated with
the cost function. We have

H =

(
2a 0
0 2

)
. (3.12)

Therefore, the eigenvalues of the Hessian matrix are 2a and 2, which are stricly positive if a > 0.
Hence, the cost function is stricly convex and there is only one global solution, that is x? =
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Figure 3.7: Spendley et al. numerical experiment – History of simplex

Figure 3.8: Spendley et al. numerical experiment – History of logarithm of the size of the simplex
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Figure 3.9: Spendley et al. numerical experiment – History of logarithm of function

(0, 0, . . . , 0)T . The ratio between these two eigenvalues is a. This leads to an elongated valley,
which is extremely narrow when a is large.

The stopping criteria is based on the relative size of the simplex with respect to the size of
the initial simplex

σ+(S) < tol × σ+(S0). (3.13)

In this experiment, we use tol = 10−8 as the relative tolerance on simplex size.
We set the maximum number of function evaluations to 400. The initial simplex is a regular

simplex with length unity.
The following Scilab script allows to perform the optimization.

a = 100 ;
function y = quadrat i c ( x )

y = a ∗ x (1)ˆ2 + x (2 ) ˆ 2 ;
endfunction
nm = nmplot new ( ) ;
nm = nmplot con f i gure (nm, ”−numberofvariables” , 2 ) ;
nm = nmplot con f i gure (nm, ”−function” , quadrat i c ) ;
nm = nmplot con f i gure (nm, ”−x0” , [ 1 0 . 0 1 0 . 0 ] ’ ) ;
nm = nmplot con f i gure (nm, ”−maxiter” , 4 00 ) ;
nm = nmplot con f i gure (nm, ”−maxfunevals” , 4 00 ) ;
nm = nmplot con f i gure (nm, ”−tolxmethod” ,”disabled” ) ;
nm = nmplot con f i gure (nm, ”−tolsimplexizerelative ” , 1 . e−8);
nm = nmplot con f i gure (nm, ”−simplex0method” ,”spendley” ) ;
nm = nmplot con f i gure (nm, ”−method” ,”fixed” ) ;
nm = nmplot con f i gure (nm, ”−verbose” , 1 ) ;
nm = nmplot con f i gure (nm, ”−verbosetermination” , 0 ) ;
nm = nmplot con f i gure (nm, ”−simplexfn” ,”rosenbrock . fixed . history . simplex . txt” ) ;
nm = nmplot con f i gure (nm, ”−fbarfn” ,”rosenbrock . fixed . history . fbar . txt” ) ;
nm = nmplot con f i gure (nm, ”−foptfn” ,”rosenbrock . fixed . history . fopt . txt” ) ;
nm = nmplot con f i gure (nm, ”−sigmafn” ,”rosenbrock . fixed . history . sigma . txt” ) ;
nm = nmplot search (nm) ;
nmplot d i sp lay (nm) ;
nm = nmplot destroy (nm) ;

The numerical results are presented in table 3.6, where the experiment is presented for a = 100.
We can check that the number of function evaluations is equal to its maximum limit, even if the
value of the function at optimum is very inaccurate (f(x?) ≈ 0.08).

The various simplices generated during the iterations are presented in figure 3.11. The method
use reflections in the early iterations. Then there is no possible improvement using reflections, so
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Iterations 340
Function Evaluations 400
a 100.0
x0 (10.0, 10.0)
Relative tolerance on simplex size 10−8

Exact x? (0., 0.)
Computed x? (0.001, 0.2)
Computed f(x?) 0.08

Figure 3.10: Numerical experiment with Spendley’s et al. method on a badly scaled quadratic
function

that shrinking is necessary. But the repeated shrink steps makes the simplex very small, leading
to a large number of iterations. This is a limitation of the method, which is based on a simplex
which can vary its size, but not its shape.

In figure 3.12, we analyze the behavior of the method with respect to scaling. We check that
the method behave poorly when the scaling is bad. The convergence speed is slower and slower
and impractical when a > 10

3.2.3 Sensitivity to dimension

In this section, we try to study the convergence of the Spendley et al. algorithm with respect to
the number of variables, as presented by Han & Neumann in [14]. We emphasize, though, that
Han & Neumann present their numerical experiment with the Nelder-Mead algorithm, while we
present in this section the Spendley et al. algorithm. The function we try to minimize is the
following quadratic function in n-dimensions

f(x) =
∑
i=1,n

x2
i . (3.14)

The initial guess is the origin x0 = (0, 0, . . . , 0)T , which is also the global solution of the
problem. We have f(x0) = 0 so that this vertex is never updated during the iterations. The initial
simplex is computed with a random number generator. The first vertex of the initial simplex is the
origin. The other vertices are uniform in the [−1, 1] interval. An absolute termination criteria on
the size of the simplex is used, that is, the algorithm is stopped when the inequality σ+(Sk) ≤ 10−8

is satisfied.
For this test, we compute the rate of convergence as presented in Han & Neuman [14]. This

rate is defined as

ρ(S0, n) = lim supk→∞

( ∏
i=0,k−1

σ(Si+1)

σ(Si)

)1/k

, (3.15)

where k is the number of iterations. That definition can be viewed as the geometric mean of the
ratio of the oriented lengths between successive simplices. This definition implies

ρ(S0, n) = lim supk→∞

(
σ(Sk)

σ(S0)

)1/k

, (3.16)
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Figure 3.11: Spendley et al. numerical experiment with f(x1, x2) = ax2
1 + x2

2 and a = 100 –
History of simplex

a Function evaluations Computed f(x?)
1.0 160 2.35e− 18
10.0 222 1.2e− 17
100.0 400 0.083
1000.0 400 30.3
10000.0 400 56.08

Figure 3.12: Numerical experiment with Spendley’s et al. method on a badly scaled quadratic
function
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If k is the number of iterations required to obtain convergence, as indicated by the termination
criteria, the rate of convergence is practically computed as

ρ(S0, n, k) =

(
σ(Sk)

σ(S0)

)1/k

. (3.17)

The following Scilab script allows to perform the optimization.
function y = quadrat i c ( x )

y = x ( : ) . ’ ∗ x ( : ) ;
endfunction
//
// myoutputcmd −−
// This command i s called back by the Nelder−Mead
// algorithm .
// Arguments
// state : the current state of the algorithm
// ”in i t ”, ”i ter ”, ”done”
// data : the data at the current state
// This i s a t l i s t with the following entries :
// ∗ x : the optimal vector of parameters
// ∗ fval : the minimum function value
// ∗ simplex : the simplex , as a simplex object
// ∗ iteration : the number of iterations performed
// ∗ funccount : the number of function evaluations
// ∗ step : the type of step in the previous iteration
//
function myoutputcmd ( s t a t e , data , s tep )

global STEP COUNTER
STEP COUNTER( step ) = STEP COUNTER( step ) + 1

endfunction

// OptimizeHanNeumann −−
// Perform the optimization and returns the object
// Arguments
// N : the dimension
function nm = OptimizeHanNeumann ( N )

global STEP COUNTER
STEP COUNTER(”in i t ”) = 0 ;
STEP COUNTER(”done”) = 0 ;
STEP COUNTER(”ref lect ion ”) = 0 ;
STEP COUNTER(”expansion”) = 0 ;
STEP COUNTER(”insidecontraction”) = 0 ;
STEP COUNTER(”outsidecontraction”) = 0 ;
STEP COUNTER(”expansion”) = 0 ;
STEP COUNTER(”shrink”) = 0 ;
STEP COUNTER(”reflectionnext ”) = 0 ;

x0 = zeros (N, 1 ) ;
nm = neldermead new ( ) ;
nm = ne ldermead con f igure (nm, ”−numberofvariables” ,N) ;
nm = ne ldermead con f igure (nm, ”−function” , quadrat i c ) ;
nm = ne ldermead con f igure (nm, ”−x0” , x0 ) ;
nm = ne ldermead con f igure (nm, ”−maxiter” , 10000) ;
nm = ne ldermead con f igure (nm, ”−maxfunevals” , 10000) ;
nm = ne ldermead con f igure (nm, ”−tolxmethod” ,”disabled” ) ;
nm = ne ldermead con f igure (nm, ”−tolsimplexizeabsolute” , 1 . e−8);
nm = ne ldermead con f igure (nm, ”−tolsimplexizerelative ” , 0 ) ;
nm = ne ldermead con f igure (nm, ”−simplex0method” ,”given” ) ;
coords0 ( 1 , 1 :N) = zeros (1 ,N) ;
coords0 ( 2 :N+1 ,1:N) = 2 ∗ rand (N,N) − 1 ;
nm = ne ldermead con f igure (nm, ”−coords0” , coords0 ) ;
nm = ne ldermead con f igure (nm, ”−method” ,”fixed” ) ;
nm = ne ldermead con f igure (nm, ”−verbose” , 0 ) ;
nm = ne ldermead con f igure (nm, ”−verbosetermination” , 0 ) ;
nm = ne ldermead con f igure (nm, ”−outputcommand” ,myoutputcmd ) ;
//
// Perform optimization
//
nm = neldermead search (nm) ;

endfunction

for N = 1:10
nm = OptimizeHanNeumann ( N ) ;
n i t e r = neldermead get ( nm , ”−i terations ” ) ;
f uneva l s = neldermead get ( nm , ”−funevals” ) ;
s implex0 = neldermead get ( nm , ”−simplex0” ) ;
sigma0 = opt ims imp l ex s i z e ( s implex0 , ”sigmaplus” ) ;
s implexopt = neldermead get ( nm , ”−simplexopt” ) ;
sigmaopt = opt ims imp l ex s i z e ( s implexopt , ”sigmaplus” ) ;
rho = ( sigmaopt / sigma0 ) ˆ ( 1 / n i t e r ) ;
//mprintf ( ”%d %d %d %e\n” , N , funevals , niter , rho ) ;
mprintf (”%d %s\n” ,N, strcat ( string (STEP COUNTER) , ” ”) )
nm = neldermead destroy (nm) ;

end

The figure 3.13 presents the type of steps which are performed for each number of variables.
We see that the algorithm mostly performs shrink steps.
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n #Iterations # Reflections # Reflection #Shrink
/ High / Next to High

1 27 0 0 26
2 28 0 0 27
3 30 2 0 27
4 31 1 1 28
5 29 0 0 28
6 31 2 0 28
7 29 0 0 28
8 29 0 0 28
9 29 0 0 28
10 29 0 0 28
11 29 0 0 28
12 29 0 0 28
13 31 0 2 28
14 29 0 0 28
15 29 0 0 28
16 31 0 1 29
17 30 0 0 29
18 30 0 0 29
19 31 0 1 29
20 32 2 0 29

Figure 3.13: Numerical experiment with Spendley et al method on a generalized quadratic function
– Number of iterations and types of steps performed
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The figure 3.14 presents the number of function evaluations depending on the number of
variables. We can see that the number of function evaluations increases approximately linearly
with the dimension of the problem in figure 3.15. A rough rule of thumb is that, for n = 1, 20, the
number of function evaluations is equal to 30n: most iterations are shrink steps and approximately
30 iterations are required, almost independently of n.

n Function Iterations ρ(S0, n)
Evaluations

1 81 27 0.513002
2 112 28 0.512532
3 142 29 0.524482
4 168 28 0.512532
5 206 31 0.534545
6 232 29 0.512095
7 262 30 0.523127
8 292 30 0.523647
9 321 30 0.523647
10 348 29 0.512095
11 377 29 0.512095
12 406 29 0.512095
13 435 29 0.512095
14 464 29 0.512095
15 493 29 0.512095
16 540 30 0.511687
17 570 30 0.511687
18 600 30 0.511687
19 630 30 0.511687
20 660 30 0.511687

Figure 3.14: Numerical experiment with Spendley et al. method on a generalized quadratic
function

The table 3.14 also shows the interesting fact that the convergence rate is almost constant
and very close to 1/2. This is a consequence of the shrink steps, which are dividing the size of
the simplex at each iteration by 2.

3.3 Conclusion

We saw in the first numerical experiment that the method behave reasonably when the function
is correctly scaled. When the function is badly scaled, as in the second numerical experiment, the
Spendley et al. algorithm produces a large number of function evaluations and converges very
slowly. This limitation occurs with even moderate badly scaled functions and generates a very
slow method in these cases.

In the last experiment, we have explored what happens when the number of iterations is
increasing. In this experiment, the rate of convergence is close to 1/2 and the number of function
evaluations is a linear function of the number of variables (approximately 30n).
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Figure 3.15: Spendley et al. numerical experiment – Number of function evaluations depending
on the number of variables
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Chapter 4

Nelder-Mead method

In this chapter, we present Nelder and Mead’s [31] algorithm. We begin by the analysis of the
algorithm, which is based on a variable shape simplex. Then, we present geometric situations
where the various steps of the algorithm are used. In the third part, we present the rate of
convergence toward the optimum of the Nelder-Mead algorithm. This part is mainly based on
Han and Neumann’s paper [14], which makes use of a class of quadratic functions with a special
initial simplex. The core of this chapter is the analysis of several numerical experiments which
have been performed with the neldermead component. We analyze the behavior of the algorithm
on quadratic functions and present several counter examples where the Nelder-Mead algorithm is
known to fail.

4.1 Introduction

In this section, we present the Nelder-Mead algorithm for unconstrained optimization. This
algorithm is based on the iterative update of a simplex. Then we present various geometric
situations which might occur during the algorithm.

4.1.1 Overview

The goal of the Nelder and Mead algorithm is to solve the following unconstrained optimization
problem

min f(x) (4.1)

where x ∈ Rn, n is the number of optimization parameters and f is the objective function
f : Rn → R.

The Nelder-Mead method is an improvement over the Spendley’s et al. method with the goal
of allowing the simplex to vary in shape, and not only in size, as in Spendley’s et al. algorithm.

This algorithms is based on the iterative update of a simplex made of n + 1 points S =
{vi}i=1,n+1. Each point in the simplex is called a vertex and is associated with a function value
fi = f(vi) for i = 1, n+ 1.

The vertices are sorted by increasing function values so that the best vertex has index 1 and
the worst vertex has index n+ 1

f1 ≤ f2 ≤ . . . ≤ fn ≤ fn+1. (4.2)

43



The v1 vertex (resp. the vn+1 vertex) is called the best vertex (resp. worst), because it is
associated with the lowest (resp. highest) function value.

The centroid of the simplex x(j) is the center of the vertices where the vertex vj has been
excluded. This centroid is

x(j) =
1

n

∑
i=1,n+1,i 6=j

vi. (4.3)

The algorithm makes use of one coefficient ρ > 0, called the reflection factor. The standard value
of this coefficient is ρ = 1. The algorithm attempts to replace some vertex vj by a new vertex
x(ρ, j) on the line from the vertex vj to the centroid x(j). The new vertex x(ρ, j) is defined by

x(ρ, j) = (1 + ρ)x(j)− ρvj. (4.4)

4.1.2 Algorithm

In this section, we analyze the Nelder-Mead algorithm, which is presented in figure 4.1.
The Nelder-Mead algorithm makes use of four parameters: the coefficient of reflection ρ, ex-

pansion χ, contraction γ and shrinkage σ. When the expansion or contraction steps are performed,
the shape of the simplex is changed, thus ”adapting itself to the local landscape” [31].

These parameters should satisfy the following inequalities [31, 21]

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1 and 0 < σ < 1. (4.5)

The standard values for these coefficients are

ρ = 1, χ = 2, γ =
1

2
and σ =

1

2
. (4.6)

In [20], the Nelder-Mead algorithm is presented with other parameter names, that is µr = ρ,
µe = ρχ, µic = −γ and µoc = ργ. These coefficients must satisfy the following inequality

− 1 < µic < 0 < µoc < µr < µe. (4.7)

At each iteration, we compute the centroid x(n + 1) where the worst vertex vn+1 has been
excluded. This centroid is

x(n+ 1) =
1

n

∑
i=1,n

vi. (4.8)

We perform a reflection with respect to the worst vertex vn+1, which creates the reflected point
xr defined by

xr = x(ρ, n+ 1) = (1 + ρ)x(n+ 1)− ρvn+1 (4.9)

We then compute the function value of the reflected point as fr = f(xr).
From that point, there are several possibilities, which are listed below. Most steps try to

replace the worst vertex vn+1 by a better point, which is computed depending on the context.
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Compute an initial simplex S0

Sorts the vertices S0 with increasing function values
S ← S0

while σ(S) > tol do
x← x(n+ 1)
xr ← x(ρ, n+ 1) {Reflect}
fr ← f(xr)
if fr < f1 then
xe ← x(ρχ, n+ 1) {Expand}
fe ← f(xe)
if fe < fr then

Accept xe
else

Accept xr
end if

else if f1 ≤ fr < fn then
Accept xr

else if fn ≤ fr < fn+1 then
xc ← x(ργ, n+ 1) {Outside contraction}
fc ← f(xc)
if fc < fr then

Accept xc
else

Compute the points xi = x1 + σ(xi − x1), i = 2, n+ 1 {Shrink}
Compute fi = f(vi) for i = 2, n+ 1

end if
else
xc ← x(−γ, n+ 1) {Inside contraction}
fc ← f(xc)
if fc < fn+1 then

Accept xc
else

Compute the points xi = x1 + σ(xi − x1), i = 2, n+ 1 {Shrink}
Compute fi = f(vi) for i = 2, n+ 1

end if
end if
Sort the vertices of S with increasing function values

end while

Figure 4.1: Nelder-Mead algorithm – Standard version
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• In the case where fr < f1, the reflected point xr were able to improve (i.e. reduce) the
function value. In that case, the algorithm tries to expand the simplex so that the function
value is improved even more. The expansion point is computed by

xe = x(ρχ, n+ 1) = (1 + ρχ)x(n+ 1)− ρχvn+1 (4.10)

and the function is computed at this point, i.e. we compute fe = f(xe). If the expansion
point allows to improve the function value, the worst vertex vn+1 is rejected from the simplex
and the expansion point xe is accepted. If not, the reflection point xr is accepted.

• In the case where f1 ≤ fr < fn, the worst vertex vn+1 is rejected from the simplex and the
reflected point xr is accepted.

• In the case where fn ≤ fr < fn+1, we consider the point

xc = x(ργ, n+ 1) = (1 + ργ)x(n+ 1)− ργvn+1 (4.11)

is considered. If the point xc is better than the reflection point xr, then it is accepted. If
not, a shrink step is performed, where all vertices are moved toward the best vertex v1.

• In other cases, we consider the point

xc = x(−γ, n+ 1) = (1− γ)x(n+ 1) + γvn+1. (4.12)

If the point xc is better than the worst vertex xn+1, then it is accepted. If not, a shrink
step is performed.

The algorithm from figure 4.1 is the most popular variant of the Nelder-Mead algorithm. But
the original paper is based on a ”greedy” expansion, where the expansion point is accepted if it is
better than the best point (and not if it is better than the reflection point). This ”greedy” version
is implemented in AS47 by O’Neill in [33] and the corresponding algorithm is presented in figure
4.2.

[...]

xe ← x(ρχ, n+ 1) {Expand}
fe ← f(xe)
if fe < f1 then

Accept xe
else

Accept xr
end if

[...]

Figure 4.2: Nelder-Mead algorithm – Greedy version
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R = Reflexion

H = Highest

L = Lowest

N = Next to highest

E = Expansion

Ci = Contraction 
       (inside)

Co = Contraction 
       (outside)

CiShrink

Figure 4.3: Nelder-Mead simplex steps

4.2 Geometric analysis

The figure 4.3 presents the various moves of the simplex in the Nelder-Mead algorithm.
The figures 4.4 to 4.9 present the detailed situations when each type of step occur. We

emphasize that these figures are not the result of numerical experiments. These figures been
created in order to illustrate the following specific points of the algorithm.

• Obviously, the expansion step is performed when the simplex is far away from the optimum.
The direction of descent is then followed and the worst vertex is moved into that direction.

• When the reflection step is performed, the simplex is getting close to an valley, since the
expansion point does not improve the function value.

• When the simplex is near the optimum, the inside and outside contraction steps may be
performed, which allows to decrease the size of the simplex. The figure 4.6, which illustrates
the inside contraction step, happens in ”good” situations. As presented in section 4.5.4,
applying repeatedly the inside contraction step can transform the simplex into a degenerate
simplex, which may let the algorithm converge to a non stationnary point.

• The shrink steps (be it after an outside contraction or an inside contraction) occurs only in
very special situations. In practical experiments, shrink steps are rare.

4.3 Automatic restarts

In this section, we describe an algorithm which enables the user to perform automatic restarts
when a search has failed. A condition is used to detect that a false minimum has been reached. We
describe the automatic restart algorithm as well as the conditions used to detect a false minimum.

4.3.1 Automatic restart algorithm

In this section, we present the automatic restart algorithm.
The goal of this algorithm is to detect that a false minimum has been found, a situation which

may occur with the Nelder-Mead algorithm, as we are going to see in the numerical experiments
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E = Expansion

Accepted

Figure 4.4: Nelder-Mead simplex moves – Reflection
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R = Reflexion

H = Highest
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E = Expansion

Accepted

Figure 4.5: Nelder-Mead simplex moves – Expansion

R

H

L

N

Accepted

Ci

R = Reflexion

H = Highest

L = Lowest

N = Next to highest

Ci = Contraction 
       (inside)

f(R) ≥ f(H)

Figure 4.6: Nelder-Mead simplex moves - Inside contraction
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Figure 4.7: Nelder-Mead simplex moves – Outside contraction
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Figure 4.8: Nelder-Mead simplex moves – Shrink after inside contraction.
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f(Co)>f(R)

Figure 4.9: Nelder-Mead simplex moves – Shrink after outside contraction

section. These problems are known by practitionners since decades and several authors have tried
to detect and solve this specific problem.

In 1971, O’Neill published a fortran 77 implementation of the Nelder-Mead algorithm [33].
In order to check that the algorithm has converged, a factorial test is used. This test will be
detailed later in this section. If a false minimum is found by this test, O’Neill suggests to restart
the algorithm.

In 1998, Mc Kinnon [23] showed a simple objective function for which the Nelder-Mead algo-
rithm fails to converge to a minimum and, instead, converge to a non-stationnary point. In this
numerical experiment, the simplex degenerates toward a single point. In 1999, Kelley [19] shows
that restarting the algorithm allows to converge toward the global minimum. In order to detect
the convergence problem, Kelley adapted the sufficient decrease condition which is classical in the
frameword of gradient-based algorithms. When this condition is met, the algorithm is stopped
and a restart should be performed.

Scilab provides an automatic restart algorithm, which allows to detect that a false optimum
has been reached and that a new search must be performed. The algorithm is based on a loop
where a maximum number of restarts is allowed. The default maximum number of restarts is 3,
which means that the maximum number of searches is 4.

After a search has been performed, a condition is computed to know whether a restart must
be performed. There are two conditions which are implemented:

• O’Neill factorial test,

• Kelley’s stagnation condition.

We will analyze these tests later in this section.
Notice that the automatic restarts are available whatever the simplex algorithm, be it the

Nelder-Mead variable shape simplex algorithm, Spendley’s et al. fixed shape simplex algorithm
or any other algorithm. This is because the automatic restart is a loop programmed above the
optimization algorithm.

The automatic restart algorithm is presented in 4.10. Notice that, if a false minimum is
detected after the maximum number of restart has been reached, the status is set to ”maxrestart”.
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restartnb← 0
reached← FALSE
for i = 1 to restartmax+ 1 do
search()
istorestart = istorestart()
if NOT (istorestart) then
reached← TRUE {Convergence}
BREAK

end if
if i < restartmax then
restartnb← restartnb+ 1 {A restart is going to be performed}

end if
end for
if reached then

printf ( ”Convergence reached after
else

printf ( ”Convergence not reached after maximum
status← ”maxrestart”

end if

Figure 4.10: Nelder-Mead algorithm – Automatic restart algorithm.

4.3.2 O’Neill factorial test

In this sectin, we present O’Neill’s factorial test. This algorithm is given a vector of lengths,
stored in the step variable. It is also given a small value ε, which is an step length relative to the
step variable. The algorithm is presented in figure 4.11.

O’Neill’s factorial test requires 2n function evaluations. In O’Neill’s implementation, the
parameter ε is set to the constant value 1.e − 3. In Scilab’s implementation, this parameter can
be customized, thanks to the -restarteps option. Its default value is %eps, the machine epsilon.
In O’Neill’s implementation, the parameter step is equal to the vector of length used in order to
compute the initial simplex. In Scilab’s implementation, the two parameters are different, and
the step used in the factorial test can be customized with the -restartstep option. Its default value
is 1.0, which is expanded into a vector with size n.

4.3.3 Kelley’s stagnation detection

In this section, we present Kelley’s stagnation detection, which is based on the simplex gradient,
which definition has been presented in chapter 2.

C.T. Kelley described in [19] a method to detect stagnation of Nelder-Mead’s algorithm. In
order to detect the convergence problem, Kelley adapted the sufficient decrease condition which is
classical in the frameword of gradient-based algorithms. When this condition is met, the algorithm
is stopped and a restart should be performed. We first present the sufficient decrease condition
in the context of line search methods. We then present the stagnation condition and a variant of
this condition.
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x← x?

istorestart = FALSE
for i = 1 to n do
δ = step(i) ∗ ε
x(i) = x(i) + δ
fv = f(x)
if fv < fopt then
istorestart = TRUE
break

end if
x(i) = x(i)− δ − δ
fv = f(x)
if fv < fopt then
istorestart = TRUE
break

end if
x(i) = x(i) + δ

end for

Figure 4.11: O’Neill’s factorial test

Line search and sufficient decrease condition

Before presenting the stagnation criteria suggested by Kelley, it is worthwhile to consider a general
gradient-based optimization algorithm and to analyse the way to compute the step length.

Consider an optimization algorithm where the update of the current point xk ∈ Rn is based
on the iteration

xk+1 = xk + αkpk, (4.13)

where pk ∈ Rn is the direction and αk > 0 is the step length. Assume that the direction pk
is given and that αk is unknown. The problem is to find the minimizer of the one dimensional
function Φ defined by the equality

Φ(α) = f(xk + αpk), (4.14)

for all α > 0.
During the computation of the step length α, there is a tradeoff between reducing sufficiently

the function value and not spending too much time in doing so. Line search methods aims at
providing an efficient solution for this problem. Several algorithms can be designed in order to
find such an optimal α, but all rely on a set of conditions which allows to know when to stop
the algorithm. Many line search algorithms are based on the Goldstein-Armijo condition [17, 10],
which requires that

f(xk + αpk) ≤ f(xk) + cα∇fTk pk, (4.15)

where c ∈ (0, 1) is a given parameter. This condition is presented in figure 4.12. The term fTk pk
is the directionnal derivative of the objective function f along the direction pk. The Goldstein-
Armijo condition ensures that the step length is not too large by requiring that the reduction
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ϕ(α)=f(x  +αp  )k k
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f(x  )+cα∇f  p  k k
T

k

Figure 4.12: Sufficient decrease condition

in f be proportional to the step length α and the directional derivative fTk pk. In practice, the
parameter c is often chosen as c = 10−4. This implies that the line f(xk)+cα∇fTk pk has a slightly
decreasing slope, i.e. the condition is rather loose and accept many values of α.

In many line search methods, the Goldstein-Armijo condition is used in combination with
another condition, which ensures that the step length α is not too small. This is the additionnal
requirement of the Wolfe conditions, also called the curvature condition. We will not detail this
further, because the curvature condition is not used in Kelley’s stagnation detection criteria.

Stagnation criteria

Let us denote by Sk the simplex at iteration k. We make the assumption that the initial simplex
S0 is nondegenerate, i.e. the condition number of the matrix of simplex directions κ(D(S)) is
finite. We denote by k ≥ 0 the index of the current iteration. Let us denote by fk1 the function

value at the best vertex v
(k)
1 , i.e. fk1 = f

(
v

(k)
1

)
.

The derivation is based on the following assumptions.

Assumption 4.3.1 For all iterations k,

• the simplex Sk is nondegenerate,

• the vertices are ordered by increasing function value, i.e.

fk1 ≤ fk2 ≤ . . . ≤ fkn+1, (4.16)

• the best function value is strictly decreasing, i.e. fk+1
1 < fk1 .

If no shrink step occurs in the Nelder-Mead algorithm, then the best function value is indeed
decreasing.

Kelley defines a sufficient decrease condition which is analalogous to the sufficient decrease
condition for gradient-base algorithms. This condition requires that the k+ 1st iteration satisfies

fk+1
1 − fk1 < −c‖g(Sk)‖2, (4.17)

where g(Sk) is the simplex gradient associated with the simplex Sk and c > 0 is a small parameter.
A typical choice in line-search methods is c = 10−4. Kelley suggest in [19] to use 4.17 as a test to
detect the stagnation of the Nelder-Mead algorithm.

For consistency, we reproduce below a proposition already presented in chapter 2.
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Proposition 4.3.2 Let S be a simplex. Let the gradient g be Lipshitz continuous in a neighbour-
hood of S with Lipshitz constant L. Consider the euclidian norm ‖.‖. Then, there is a constant
K > 0, depending only on L such that

‖g(v1)− g(S)‖2 ≤ Kκ(S)σ+(S). (4.18)

The stagnation detection criteria is based on the following proposition.

Proposition 4.3.3 Let a sequence of simplices {Sk}k≥0 satisfy assumption 4.3.1. Assume that
the sequence {fk1 }k≥0 is bounded from below. Let the gradient g of the objective function be Lipshitz
continuous in a neighbourhood of {Sk}k≥0 with Lipshitz constant L. Assume that the constant
Kk, defined in proposition 4.3.2 is bounded. Assume that the sufficient decrease condition 4.17 is
satisfied and that the simplices are so that

lim
k→∞

κ(Sk)σ+(Sk) = 0. (4.19)

Therefore, if the best vertex in the simplices converges towards v?1, then g(v?1) = 0.

Essentially, the proposition states that the condition 4.17 is necessary to get the convergence
of the algorithm towards a stationnary point.

Notice that, since the simplex condition number κ(Sk) satisfies κ(Sk) ≥ 1, then the the equality
4.19 implies that the size of the simplices converges towards 0.

Proof We first proove that the sequence of simplex gradients {g(Sk)}k≥0 converges toward 0.
Notice that the sufficient decrease condition 4.17 can be written as

‖g(Sk)‖ <
1√
c

√
fk1 − fk+1

1 , (4.20)

where the right hand side is positive, by the assumption 4.3.1. By hypothesis, f is uniformly
bounded from below and the sequence {fk1 }k≥0 is stricly decreasing by assumption 4.3.1. There-
fore, the sequence {fk1 }k≥0 converges, which implies that the the sequence {fk1−fk+1

1 }k≥0 converges
to 0. Hence, the inequality 4.20 implies that the sequence {g(Sk)}k≥0 converges towards 0.

Assume that v?1 is an accumulation point of the best vertex of the simplices. We now proove
that v?1 is a critical point of the objective function, i.e. we proove that the sequence {g(vk1)}k≥0

converges towards 0. Notice that we can write the gradient as the sum

g(vk1) =
(
g(vk1)− g(Sk)

)
+ g(Sk), (4.21)

which implies

‖g(vk1)‖ ≤ ‖g(vk1)− g(Sk)‖+ ‖g(Sk)‖. (4.22)

By proposition 4.3.2, there is a constant Kk > 0, depending on L and k, such that

‖g(vk1)− g(Sk)‖2 ≤ Kkκ(Sk)σ+(Sk). (4.23)

By hypothesis, the sequence {Kk}k≥0 is bounded, so that there exists a K > 0 so that the
inequality Kk ≤ K, which implies

‖g(vk1)− g(Sk)‖2 ≤ Kκ(Sk)σ+(Sk). (4.24)
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We plug the previous inequality into 4.22 and get

‖g(vk1)‖ ≤ Kκ(Sk)σ+(Sk) + ‖g(Sk)‖. (4.25)

We have already prooved that the sequence {g(Sk)}k≥0 converges towards 0. Moreover, by hy-
pothesis, the sequence {κ(Sk)σ+(Sk)}k≥0 converges towards 0. Therefore, we have

lim
k→∞

g(vk1) = 0, (4.26)

which concludes the proof.

Kelley also states a similar theorem which involves noisy functions. These functions are of the
form

f(x) = f̃(x) + φ(x), (4.27)

where f̃ is smooth and φ is a bounded low-amplitude perturbation. The result is that, if the noise
function φ has a magnitude smaller than σ+(S), then the proposition 4.3.3 still holds.

A variant of the stagnation criteria

In his book [20], C.T. Kelley suggest a slightly different form for the stagnation criteria 4.17. This
variant is based on the fact that the Armijo-Goldstein condition

f(xk + αpk) ≤ f(xk) + cα∇fTk pk, (4.28)

distinguish the parameter c = 10−4 and the step length αk > 0. In the simplex algorithm, there is
no such step length, so that the step length α must be incorporated into the parameter c, which
leads to the condition

fk+1
1 − fk1 < −c‖g(Sk)‖2, (4.29)

with c = 10−4. Now, at the first iteration, the simplex diameter σ+(S0) might be much smaller
that the simplex gradient ‖g(Sk)‖ so that the previous condition may fail. Kelley address this
problem by modifying the previous condition into

fk+1
1 − fk1 < −c

σ+(S0)

‖g(S0)‖
‖g(Sk)‖2. (4.30)

4.4 Convergence properties on a quadratic

In this section, we reproduce one result presented by Han and Neumann [14], which states the
rate of convergence toward the optimum on a class of quadratic functions with a special initial
simplex. Some additional results are also presented in the Phd thesis by Lixing Han [13]. We
study a generalized quadratic and use a particular initial simplex. We show that the vertices
follow a recurrence equation, which is associated with a characteristic equation. The study of
the roots of these characteristic equations give an insight of the behavior of the Nelder-Mead
algorithm when the dimension n increases.
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Let us suppose than we want to minimize the function

f(x) = x2
1 + . . .+ x2

n (4.31)

with the initial simplex

S0 =
[
0,v

(0)
1 , . . . ,v(0)

n

]
(4.32)

With this choice of the initial simplex, the best vertex remains fixed at 0 = (0, 0, . . . , 0)T ∈ Rn.
As the cost function 4.31 is strictly convex, the Nelder-Mead method never performs the shrink
step. Therefore, at each iteration, a new simplex is formed by replacing the worst vertex v

(k)
n ,

by a new, better vertex. Assume that the Nelder-Mead method generates a sequence of simplices
{Sk}k≥0 in Rn, where

Sk =
[
0,v

(k)
1 , . . . ,v(n)

n

]
(4.33)

We wish that the sequence of simplices Sk → 0 ∈ Rn as k → ∞. To measure the progress of
convergence, Han and Neumann use the oriented length σ+(Sk) of the simplex Sk, defined by

σ+(S) = max
i=2,m

‖vi − v1‖2. (4.34)

We say that a sequence of simplices {Sk}k≥0 converges to the minimizer 0 ∈ Rn of the function
in equation 4.31 if limk→∞ σ+(Sk) = 0.

We measure the rate of convergence defined by

ρ(S0, n) = lim supk→∞

( ∑
i=0,k−1

σ(Si+1)

σ(Si)

)1/k

. (4.35)

That definition can be viewed as the geometric mean of the ratio of the oriented lengths between
successive simplices and the minimizer 0. This definition implies

ρ(S0, n) = lim supk→∞

(
σ(Sk+1)

σ(S0)

)1/k

. (4.36)

According to the definition, the algorithm is convergent if ρ(S0, n) < 1. The larger the ρ(S0, n),
the slower the convergence. In particular, the convergence is very slow when ρ(S0, n) is close to 1.
The analysis is based on the fact that the Nelder-Mead method generates a sequence of simplices
in Rn satisfying

Sk =
[
0,v(k+n−1), . . . ,v(k+1),v(k)

]
, (4.37)

where 0,v(k+n−1), . . . ,v(k+1),v(k) ∈ Rn are the vertices of the k − th simplex, with

f(0) < f
(
v(k+n−1)

)
< f

(
v(k+1)

)
< f

(
v(k)

)
, (4.38)

for k ≥ 0.
To simplify the analysis, we consider that only one type of step of the Nelder-Mead method

is applied repeatedly. This allows to establish recurrence equations for the successive simplex
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vertices. As the shrink step is never used, and the expansion steps is never used neither (since
the best vertex is already at 0), the analysis focuses on the outside contraction, inside contraction
and reflection steps.

The centroid of the n best vertices of Sk is given by

v(k) =
1

n

(
v(k+1) + . . .+ v(k+n−1) + 0

)
(4.39)

=
1

n

(
v(k+1) + . . .+ v(k+n−1)

)
(4.40)

=
1

n

∑
i=1,n−1

v(k+i) (4.41)

4.4.1 With default parameters

In this section, we analyze the roots of the characteristic equation with fixed, standard inside and
outside contraction coefficients.

Outside contraction
If the outside contraction step is repeatedly performed with µoc = ργ = 1

2
, then

v(k+n) = v(k) +
1

2

(
v(k) − v(k)

)
. (4.42)

By plugging the definition of the centroid 4.41 into the previous equality, we find the recurrence
formula

2nv(k+n) − 3v(k+1) − . . .− 3v(k+n−1) + nv(k) = 0. (4.43)

The associated characteristic equation is

2nµn − 3µn−1 − . . .− 3µ+ n = 0. (4.44)

Inside contraction
If the inside contraction step is repeatedly performed with µic = −γ = −1

2
, then

v(k+n) = v(k) − 1

2

(
v(k) − v(k)

)
. (4.45)

By plugging the definition of the centroid 4.41 into the previous equality, we find the recurrence
formula

2nv(k+n) − v(k+1) − . . .− v(k+n−1) − nv(k) = 0. (4.46)

The associated characteristic equation is

2nµn − µn−1 − . . .− µ− n = 0. (4.47)

Reflection
If the reflection step is repeatedly performed with µr = ρ = 1, then

v(k+n) = v(k) +
(
v(k) − v(k)

)
. (4.48)
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By plugging the definition of the centroid 4.41 into the previous equality, we find the recurrence
formula

nv(k+n) − 2v(k+1) − . . .− 2v(k+n−1) + nv(k) = 0. (4.49)

The associated characteristic equation is

nµn − 2µn−1 − . . .− 2µ+ n = 0. (4.50)

The recurrence equations 4.44, 4.47 and 4.50 are linear. Their general solutions are of the
form

v(k) = µk1a1 + . . .+ µknan, (4.51)

where {µi}i=1,n are the roots of the characteristic equations and {ai}i=1,n ∈ Cn are independent
vectors such that v(k) ∈ Rn for all k ≥ 0.

The analysis by Han and Neumann [14] gives a deep understanding of the convergence rate
for this particular situation. For n = 1, they show that the convergence rate is 1

2
. For n = 2, the

convergence rate is
√

2
2
≈ 0.7 with a particular choice for the initial simplex. For n ≥ 3, Han and

Neumann [14] perform a numerical analysis of the roots.
In the following Scilab script, we compute the roots of these 3 characteristic equations.

//
// computeroots1 −−
// Compute the roots of the characterist ic equations of
// usual Nelder−Mead method.
//
function computeroots1 ( n )

// Polynomial for outside contraction :
// n − 3x − . . . − 3xˆ(n−1) + 2n xˆ(n) = 0
mprintf (”Polynomial for outside contraction :\n” ) ;
c o e f f s = zeros (1 , n+1);
c o e f f s (1 ) = n
c o e f f s ( 2 : n) = −3
c o e f f s (n+1) = 2 ∗ n
p=poly ( c o e f f s , ”x” ,”coeff ”)
disp (p)
mprintf (”Roots :\n” ) ;
r = roots (p)
for i =1:n

mprintf (”Root #%d/%d |%s|=%f\n” , i , length ( r ) , string ( r ( i ) ) , abs ( r ( i ) ) )
end
// Polynomial for inside contraction :
// − n − x − . . . − xˆ(n−1) + 2n xˆ(n)= 0
mprintf (”Polynomial for inside contraction :\n” ) ;
c o e f f s = zeros (1 , n+1);
c o e f f s (1 ) = −n
c o e f f s ( 2 : n) = −1
c o e f f s (n+1) = 2 ∗ n
p=poly ( c o e f f s , ”x” ,”coeff ”)
disp (p)
mprintf (”Roots :\n” ) ;
r = roots (p)
for i =1:n

mprintf (”Root #%d/%d |%s|=%f\n” , i , length ( r ) , string ( r ( i ) ) , abs ( r ( i ) ) )
end
// Polynomial for ref lect ion :
// n − 2x − . . . − 2xˆ(n−1) + n xˆ(n) = 0
mprintf (”Polynomial for ref lect ion :\n” ) ;
c o e f f s = zeros (1 , n+1);
c o e f f s (1 ) = n
c o e f f s ( 2 : n) = −2
c o e f f s (n+1) = n
p=poly ( c o e f f s , ”x” ,”coeff ”)
disp (p)
r = roots (p)
mprintf (”Roots :\n” ) ;
for i =1:n

mprintf (”Root #%d/%d |%s|=%f\n” , i , length ( r ) , string ( r ( i ) ) , abs ( r ( i ) ) )
end

endfunction

If we execute the previous script with n = 10, the following output is produced.
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-->computeroots1 ( 10 )
Polynomial for outside contraction :

2 3 4 5 6 7 8 9 10
10 - 3x - 3x - 3x - 3x - 3x - 3x - 3x - 3x - 3x + 20x

Roots :
Root #1/10 |0.5822700+%i*0.7362568|=0.938676
Root #2/10 |0.5822700-%i*0.7362568|=0.938676
Root #3/10 |-0.5439060+%i*0.7651230|=0.938747
Root #4/10 |-0.5439060-%i*0.7651230|=0.938747
Root #5/10 |0.9093766+%i*0.0471756|=0.910599
Root #6/10 |0.9093766-%i*0.0471756|=0.910599
Root #7/10 |0.0191306+%i*0.9385387|=0.938734
Root #8/10 |0.0191306-%i*0.9385387|=0.938734
Root #9/10 |-0.8918713+%i*0.2929516|=0.938752
Root #10/10 |-0.8918713-%i*0.2929516|=0.938752
Polynomial for inside contraction :

2 3 4 5 6 7 8 9 10
- 10 - x - x - x - x - x - x - x - x - x + 20x

Roots :
Root #1/10 |0.7461586+%i*0.5514088|=0.927795
Root #2/10 |0.7461586-%i*0.5514088|=0.927795
Root #3/10 |-0.2879931+%i*0.8802612|=0.926175
Root #4/10 |-0.2879931-%i*0.8802612|=0.926175
Root #5/10 |-0.9260704|=0.926070
Root #6/10 |0.9933286|=0.993329
Root #7/10 |0.2829249+%i*0.8821821|=0.926440
Root #8/10 |0.2829249-%i*0.8821821|=0.926440
Root #9/10 |-0.7497195+%i*0.5436596|=0.926091
Root #10/10 |-0.7497195-%i*0.5436596|=0.926091
Polynomial for reflection :

2 3 4 5 6 7 8 9 10
10 - 2x - 2x - 2x - 2x - 2x - 2x - 2x - 2x - 2x + 10x

Roots :
Root #1/10 |0.6172695+%i*0.7867517|=1.000000
Root #2/10 |0.6172695-%i*0.7867517|=1.000000
Root #3/10 |-0.5801834+%i*0.8144859|=1.000000
Root #4/10 |-0.5801834-%i*0.8144859|=1.000000
Root #5/10 |0.9946011+%i*0.1037722|=1.000000
Root #6/10 |0.9946011-%i*0.1037722|=1.000000
Root #7/10 |0.0184670+%i*0.9998295|=1.000000
Root #8/10 |0.0184670-%i*0.9998295|=1.000000
Root #9/10 |-0.9501543+%i*0.3117800|=1.000000
Root #10/10 |-0.9501543-%i*0.3117800|=1.000000

The following Scilab script allows to compute the minimum and the maximum of the modulus
of the roots. The ”e” option of the ”roots” command has been used to force the use of the
eigenvalues of the companion matrix as the computational method. The default algorithm, based
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on the Jenkins-Traub Rpoly method is generating a convergence error and cannot be used in this
case.
function [ rminoc , rmaxoc , rminic , rmaxic ] = computeroot s1 abst ract ( n )

// Polynomial for outside contraction :
// n − 3x − . . . − 3xˆ(n−1) + 2n xˆ(n) = 0
c o e f f s = zeros (1 , n+1);
c o e f f s (1 ) = n
c o e f f s ( 2 : n) = −3
c o e f f s (n+1) = 2 ∗ n
p=poly ( c o e f f s , ”x” ,”coeff ”)
r = roots (p , ”e”)
rminoc = min(abs ( r ) )
rmaxoc = max(abs ( r ) )
// Polynomial for inside contraction :
// − n − x − . . . − xˆ(n−1) + 2n xˆ(n)= 0
c o e f f s = zeros (1 , n+1);
c o e f f s (1 ) = −n
c o e f f s ( 2 : n) = −1
c o e f f s (n+1) = 2 ∗ n
p=poly ( c o e f f s , ”x” ,”coeff ”)
r = roots (p , ”e”)
rminic = min(abs ( r ) )
rmaxic = max(abs ( r ) )
mprintf (”%d & %f & %f & %f & %f\\\\\n” , n , rminoc , rmaxoc , rminic , rmaxic )

endfunction

function drawf igure1 ( nbmax )
rminoctable = zeros (1 ,nbmax)
rmaxoctable = zeros (1 ,nbmax)
rmin i c tab l e = zeros (1 ,nbmax)
rmaxictab le = zeros (1 ,nbmax)
for n = 1 : nbmax

[ rminoc , rmaxoc , rminic , rmaxic ] = computeroot s1 abst ract ( n )
rminoctable ( n ) = rminoc
rmaxoctable ( n ) = rmaxoc
rmin i c tab l e ( n ) = rminic
rmaxictab le ( n ) = rmaxic

end
plot2d ( 1 : nbmax , [ rminoctable ’ , rmaxoctable ’ , rmin ic tab le ’ , rmaxictable ’ ] )
f = gcf ( ) ;
f . c h i l d r en . t i t l e . t ext = ”Nelder−Mead characterist ic equation roots” ;
f . c h i l d r en . x l a b e l . t ext = ”Number of variables (n)” ;
f . c h i l d r en . y l a b e l . t ext = ”Roots of the characterist ic equation” ;
capt ions ( f . c h i l d r en . ch i l d r en . ch i ld ren , [ ”R−max−IC” ,”R−min−IC” ,”R−max−OC” ,”R−min−OC” ] ) ;
f . c h i l d r en . ch i l d r en ( 1 ) . l e g e nd l o c a t i o n=”in lower right ” ;
for i = 1 :4
mypoly = f . ch i l d r en . ch i l d r en ( 2 ) . ch i l d r en ( i ) ;
mypoly . foreground=i ;
mypoly . l i n e s t y l e=i ;
end
xs2png (0 , ”neldermead−roots .png” ) ;

endfunction

For the reflection characteristic equation, the roots all have a unity modulus. The minimum
and maximum roots of the inside contraction (”ic” in the table) and outside contraction (”oc” in
the table) steps are presented in table 4.13. These roots are presented graphically in figure 4.14.
We see that the roots start from 0.5 when n = 1 and converge rapidly toward 1 when n→∞.

4.4.2 With variable parameters

In this section, we analyze the roots of the characteristic equation with variable inside and outside
contraction coefficients.

Outside contraction
If the outside contraction step is repeatedly performed with variable µoc ∈ [0, µr[, then

v(k+n) = v(k) + µoc
(
v(k) − v(k)

)
(4.52)

= (1 + µoc)v
(k) − µocv(k) (4.53)

By plugging the definition of the centroid into the previous equality, we find the recurrence formula

nv(k+n) − (1 + µoc)v
(k+1) − . . .− (1 + µoc)v

(k+n−1) + nµocv
(k) = 0 (4.54)

The associated characteristic equation is

nµn − (1 + µoc)µ
n−1 − . . .− (1 + µoc)µ+ nµoc = 0. (4.55)
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n mini=1,n µ
oc
i maxi=1,n µ

oc
i mini=1,n µ

ic
i maxi=1,n µ

ic
i

1 0.500000 0.500000 0.500000 0.500000
2 0.707107 0.707107 0.593070 0.843070
3 0.776392 0.829484 0.734210 0.927534
4 0.817185 0.865296 0.802877 0.958740
5 0.844788 0.888347 0.845192 0.973459
6 0.864910 0.904300 0.872620 0.981522
7 0.880302 0.916187 0.892043 0.986406
8 0.892487 0.925383 0.906346 0.989584
9 0.902388 0.932736 0.917365 0.991766
10 0.910599 0.938752 0.926070 0.993329
11 0.917524 0.943771 0.933138 0.994485
12 0.923446 0.948022 0.938975 0.995366
13 0.917250 0.951672 0.943883 0.996051
14 0.912414 0.954840 0.948062 0.996595
15 0.912203 0.962451 0.951666 0.997034
16 0.913435 0.968356 0.954803 0.997393
17 0.915298 0.972835 0.957559 0.997691
18 0.917450 0.976361 0.959999 0.997940
19 0.919720 0.979207 0.962175 0.998151
20 0.922013 0.981547 0.964127 0.998331
21 0.924279 0.983500 0.965888 0.998487
22 0.926487 0.985150 0.967484 0.998621
23 0.928621 0.986559 0.968938 0.998738
24 0.930674 0.987773 0.970268 0.998841
25 0.932640 0.988826 0.971488 0.998932
26 0.934520 0.989747 0.972613 0.999013
27 0.936316 0.990557 0.973652 0.999085
28 0.938030 0.991274 0.974616 0.999149
29 0.939666 0.991911 0.975511 0.999207
30 0.941226 0.992480 0.976346 0.999259
31 0.942715 0.992991 0.977126 0.999306
32 0.944137 0.993451 0.977856 0.999348
33 0.945495 0.993867 0.978540 0.999387
34 0.946793 0.994244 0.979184 0.999423
35 0.948034 0.994587 0.979791 0.999455
36 0.949222 0.994900 0.980363 0.999485
37 0.950359 0.995187 0.980903 0.999513
38 0.951449 0.995450 0.981415 0.999538
39 0.952494 0.995692 0.981900 0.999561
40 0.953496 0.995915 0.982360 0.999583
45 0.957952 0.996807 0.984350 0.999671
50 0.961645 0.997435 0.985937 0.999733
55 0.964752 0.997894 0.987232 0.999779
60 0.967399 0.998240 0.988308 0.999815
65 0.969679 0.998507 0.989217 0.999842
70 0.971665 0.998718 0.989995 0.999864
75 0.973407 0.998887 0.990669 0.999881
80 0.974949 0.999024 0.991257 0.999896
85 0.976323 0.999138 0.991776 0.999908
90 0.977555 0.999233 0.992236 0.999918
95 0.978665 0.999313 0.992648 0.999926
100 0.979671 0.999381 0.993018 0.999933

Figure 4.13: Roots of the characteristic equations of the Nelder-Mead method with standard
coefficients. (Some results are not displayed to make the table fit the page).
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Figure 4.14: Modulus of the roots of the characteristic equations of the Nelder-Mead method
with standard coefficients – R-max-IC is the maximum of the modulus of the root of the Inside
Contraction steps

Inside contraction
We suppose that the inside contraction step is repeatedly performed with −1 < µic < 0. The
characteristic equation is the same as 4.55, but it is here studied in the range µic ∈]− 1, 0[.

To study the convergence of the method, we simply have to study the roots of equation 4.55,
where the range ]− 1, 0[ corresponds to the inside contraction (with −1/2 as the standard value)
and where the range ]0, µr[ corresponds to the outside contraction (with 1/2 as the standard
value).

In the following Scilab script, we compute the minimum and maximum root of the character-
istic equation, with n fixed.
//
// rootsvariable −−
// Compute roots of the characterist ic equation
// of Nelder−Mead with variable coef f i c ient mu.
// Polynomial for outside/inside contraction :
// n mu − (1+mu)x − . . . − (1+mu)xˆ(n−1) + n xˆ(n) = 0
//
function [ rmin , rmax ] = r o o t s v a r i a b l e ( n , mu )

c o e f f s = zeros (1 , n+1);
c o e f f s (1 ) = n ∗ mu
c o e f f s ( 2 : n) = −(1+mu)
c o e f f s (n+1) = n
p=poly ( c o e f f s , ”x” ,”coeff ”)
r = roots (p , ”e”)
rmin = min(abs ( r ) )
rmax = max(abs ( r ) )
mprintf (”%f & %f & %f\\\\\n” , mu, rmin , rmax)

endfunction

function d raw f i gu r e va r i ab l e ( n , nmumax )
rmintable = zeros (1 ,nmumax)
rmaxtable = zeros (1 ,nmumax)
mutable = linspace ( −1 , 1 , nmumax )
for index = 1 : nmumax

mu = mutable ( index )
[ rmin , rmax ] = r o o t s v a r i a b l e ( n , mu )
rmintable ( index ) = rmin
rmaxtable ( index ) = rmax

end
plot2d ( mutable , [ rmintable ’ , rmaxtable ’ ] )
f = gcf ( ) ;
pause
f . c h i l d r en . t i t l e . t ext = ”Nelder−Mead characterist ic equation roots” ;
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Figure 4.15: Modulus of the roots of the characteristic equations of the Nelder-Mead method with
variable contraction coefficient and n = 10 – R-max is the maximum of the modulus of the root
of the characteristic equation

f . c h i l d r en . x l a b e l . t ext = ”Contraction coef f i c ient ” ;
f . c h i l d r en . y l a b e l . t ext = ”Roots of the characterist ic equation” ;
capt ions ( f . c h i l d r en . ch i l d r en . ch i ld ren , [ ”R−max” ,”R−min” ] ) ;
f . c h i l d r en . ch i l d r en ( 1 ) . l e g e nd l o c a t i o n=”in lower right ” ;
for i = 1 :2
mypoly = f . ch i l d r en . ch i l d r en ( 2 ) . ch i l d r en ( i ) ;
mypoly . foreground=i ;
mypoly . l i n e s t y l e=i ;
end
xs2png (0 , ”neldermead−roots−variable .png” ) ;

endfunction

The figure 4.15 presents the minimum and maximum modulus of the roots of the characteristic
equation with n = 10. The result is that when µoc is close to 0, the minimum root has a modulus
close to 0. The maximum root remains close to 1, whatever the value of the contraction coefficient.
This result would mean that either modifying the contraction coefficient has no effect (because
the maximum modulus of the roots is close to 1) or diminishing the contraction coefficient should
improve the convergence speed (because the minimum modulus of the roots gets closer to 0).
This is the expected result because the more the contraction coefficient is close to 0, the more the
new vertex is close to 0, which is, in our particular situation, the global minimizer. No general
conclusion can be drawn from this single experiment.

4.5 Numerical experiments

In this section, we present some numerical experiments with the Nelder-Mead algorithm. The
two first numerical experiments involve simple quadratic functions. These experiments allows
to see the difference between Spendley’s et al. algorithm and the Nelder-Mead algorithm. We
then present several experiments taken from the bibliography. The O’Neill experiments [33] are
performed in order to check that our algorithm is a correct implementation. We then present
several numerical experiments where the Nelder-Mead does not converge properly. We analyze
the Mc Kinnon counter example from [23]. We show the behavior of the Nelder-Mead simplex
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method for a family of examples which cause the method to converge to a non stationnary point.
We analyze the counter examples presented by Han in his Phd thesis [13]. In these experiments,
the Nelder-Mead algorithm degenerates by applying repeatedly the inside contraction step. We
also reproduce numerical experiments extracted from Torczon’s Phd Thesis [48], where Virginia
Torczon presents the multi-directional direct search algorithm.

4.5.1 Quadratic function

The function we try to minimize is the following quadratic in 2 dimensions

f(x1, x2) = x2
1 + x2

2 − x1x2. (4.56)

The stopping criteria is based on the relative size of the simplex with respect to the size of
the initial simplex

σ+(S) < tol × σ+(S0), (4.57)

where the tolerance is set to tol = 10−8.
The initial simplex is a regular simplex with unit length.
The following Scilab script allows to perform the optimization.

function [ y , index ] = quadrat i c ( x , index )
y = x (1)ˆ2 + x (2)ˆ2 − x (1) ∗ x ( 2 ) ;

endfunction
nm = neldermead new ( ) ;
nm = ne ldermead con f igure (nm, ”−numberofvariables” , 2 ) ;
nm = ne ldermead con f igure (nm, ”−function” , quadrat i c ) ;
nm = ne ldermead con f igure (nm, ”−x0” , [ 2 . 0 2 . 0 ] ’ ) ;
nm = ne ldermead con f igure (nm, ”−maxiter” , 1 00 ) ;
nm = ne ldermead con f igure (nm, ”−maxfunevals” , 3 00 ) ;
nm = ne ldermead con f igure (nm, ”−tolxmethod” ,%f ) ;
nm = ne ldermead con f igure (nm, ”−tolsimplexizerelative ” , 1 . e−8);
nm = ne ldermead con f igure (nm, ”−simplex0method” ,”spendley” ) ;
nm = ne ldermead con f igure (nm, ”−method” ,”variable” ) ;
nm = neldermead search (nm) ;
ne ldermead di sp lay (nm) ;
nm = neldermead destroy (nm) ;

The numerical results are presented in table 4.16.

Iterations 65
Function Evaluations 130
x0 (2.0, 2.0)
Relative tolerance on simplex size 10−8

Exact x? (0., 0.)
Computed x? (−2.519D − 09, 7.332D − 10)
Computed f(x?) 8.728930e− 018

Figure 4.16: Numerical experiment with Nelder-Mead method on the quadratic function
f(x1, x2) = x2

1 + x2
2 − x1x2

The various simplices generated during the iterations are presented in figure 4.17.
The figure 4.18 presents the history of the oriented length of the simplex. The length is

updated at each iteration, which generates a continuous evolution of the length, compared to the
step-by-step evolution of the simplex with the Spendley et al. algorithm.

The convergence is quite fast in this case, since less than 70 iterations allow to get a function
value lower than 10−15, as shown in figure 4.19.
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Figure 4.17: Nelder-Mead numerical experiment – history of simplex

Figure 4.18: Nelder-Mead numerical experiment – History of logarithm of length of simplex

65



Figure 4.19: Nelder-Mead numerical experiment – History of logarithm of function

Badly scaled quadratic function

The function we try to minimize is the following quadratic in 2 dimensions

f(x1, x2) = ax2
1 + x2

2, (4.58)

where a > 0 is a chosen scaling parameter. The more a is large, the more difficult the problem is
to solve with the simplex algorithm.

We set the maximum number of function evaluations to 400. The initial simplex is a regular
simplex with unit length. The stopping criteria is based on the relative size of the simplex with
respect to the size of the initial simplex

σ+(S) < tol × σ+(S0), (4.59)

where the tolerance is set to tol = 10−8.
The following Scilab script allows to perform the optimization.

a = 100 . 0 ;
function [ y , index ] = quadrat i c ( x , index )

y = a ∗ x (1)ˆ2 + x (2 ) ˆ 2 ;
endfunction
nm = neldermead new ( ) ;
nm = ne ldermead con f igure (nm, ”−numberofvariables” , 2 ) ;
nm = ne ldermead con f igure (nm, ”−function” , quadrat i c ) ;
nm = ne ldermead con f igure (nm, ”−x0” , [ 1 0 . 0 1 0 . 0 ] ’ ) ;
nm = ne ldermead con f igure (nm, ”−maxiter” , 4 00 ) ;
nm = ne ldermead con f igure (nm, ”−maxfunevals” , 4 00 ) ;
nm = ne ldermead con f igure (nm, ”−tolxmethod” ,%f ) ;
nm = ne ldermead con f igure (nm, ”−tolsimplexizerelative ” , 1 . e−8);
nm = ne ldermead con f igure (nm, ”−simplex0method” ,”spendley” ) ;
nm = ne ldermead con f igure (nm, ”−method” ,”variable” ) ;
nm = neldermead search (nm) ;
ne ldermead di sp lay (nm) ;
nm = neldermead destroy (nm) ;

The numerical results are presented in table 4.20, where the experiment is presented for
a = 100. We can check that the number of function evaluation (161 function evaluations) is much
lower than the number for the fixed shape Spendley et al. method (400 function evaluations) and
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Nelder-Mead Spendley et al.
Iterations 82 340
Function Evaluations 164 Max=400
a 100.0 100.0
x0 (10.0, 10.0) (10.0, 10.0)
Initial simplex regular regular
Initial simplex length 1.0 1.0
Relative tolerance on simplex size 10−8 10−8

Exact x? (0., 0.) (0., 0.)
Computed x? (−2.D − 10− 1.D − 09) (0.001, 0.2)
Computed f(x?) 1.D − 017 0.08

Figure 4.20: Numerical experiment with Nelder-Mead method on a badly scaled quadratic func-
tion. The variable shape Nelder-Mead algorithm improves the accuracy of the result compared
to the fixed shaped Spendley et al. method.

that the function value at optimum is very accurate (f(x?) ≈ 10−17 compared to Spendley’s et
al. f(x?) ≈ 0.08).

In figure 4.21, we analyze the behavior of the method with respect to scaling. We check that
the method behaves very smoothly, with a very small number of additional function evaluations
when the scaling deteriorates. This shows how much the Nelder-Mead algorithms improves over
Spendley’s et al. method.

a Function Computed f(x?) Computed x?

Evaluations
1.0 147 1.856133e− 017 (1.920D − 09,−3.857D − 09)
10.0 156 6.299459e− 017 (2.482D − 09, 1.188D − 09)
100.0 164 1.140383e− 017 (−2.859D − 10,−1.797D − 09)
1000.0 173 2.189830e− 018 (−2.356D − 12, 1.478D − 09)
10000.0 189 1.128684e− 017 (2.409D − 11,−2.341D − 09)

Figure 4.21: Numerical experiment with Nelder-Mead method on a badly scaled quadratic func-
tion

4.5.2 Sensitivity to dimension

In this section, we try to reproduce the result presented by Han and Neumann [14], which shows
that the convergence rate of the Nelder-Mead algorithms rapidly deteriorates when the number
of variables increases. The function we try to minimize is the following quadratic in n-dimensions

f(x) =
∑
i=1,n

x2
i . (4.60)

The initial simplex is given to the solver. The first vertex is the origin ; this vertex is never
updated during the iterations. The other vertices are based on uniform random numbers in the
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interval [−1, 1]. The vertices i = 2, n+ 1 are computed from

v
(0)
i = 2rand(n, 1)− 1, (4.61)

as prescribed by [14]. In Scilab, the rand function returns a matrix of uniform random numbers
in the interval [0, 1).

The stopping criteria is based on the absolute size of the simplex, i.e. the simulation is stopped
when

σ+(S) < tol, (4.62)

where the tolerance is set to tol = 10−8.
We perform the experiment for n = 1, . . . , 19. For each experiment, we compute the conver-

gence rate from

ρ(S0, n) =

(
σ(Sk)

σ(S0)

)1/k

, (4.63)

where k is the number of iterations.
The following Scilab script allows to perform the optimization.

function [ f , index ] = quadract icn ( x , index )
f = sum( x . ˆ 2 ) ;

endfunction
//
// solvepb −−
// Find the solution for the given number of dimensions
//
function [ nb f eva l s , n i t e r , rho ] = solvepb ( n )

rand (”seed” , 0 )
nm = neldermead new ( ) ;
nm = ne ldermead con f igure (nm, ”−numberofvariables” , n ) ;
nm = ne ldermead con f igure (nm, ”−function” , quadract icn ) ;
nm = ne ldermead con f igure (nm, ”−x0” , zeros (n , 1 ) ) ;
nm = ne ldermead con f igure (nm, ”−maxiter” , 2 000 ) ;
nm = ne ldermead con f igure (nm, ”−maxfunevals” , 2 000 ) ;
nm = ne ldermead con f igure (nm, ”−tolxmethod” ,%f ) ;
nm = ne ldermead con f igure (nm, ”−tolsimplexizerelative ” , 0 . 0 ) ;
nm = ne ldermead con f igure (nm, ”−tolsimplexizeabsolute” , 1 . e−8);
nm = ne ldermead con f igure (nm, ”−simplex0method” ,”given” ) ;
coords ( 1 , 1 : n) = zeros (1 , n ) ;
for i = 2 : n+1

coords ( i , 1 : n ) = 2 .0 ∗ rand (1 , n) − 1 . 0 ;
end
nm = ne ldermead con f igure (nm, ”−coords0” , coords ) ;
nm = ne ldermead con f igure (nm, ”−method” ,”variable” ) ;
nm = neldermead search (nm) ;
s i 0 = neldermead get ( nm , ”−simplex0” ) ;
sigma0 = opt ims imp l ex s i z e ( s i 0 , ”sigmaplus” ) ;
s i op t = neldermead get ( nm , ”−simplexopt” ) ;
sigmaopt = opt ims imp l ex s i z e ( s i op t , ”sigmaplus” ) ;
n i t e r = neldermead get ( nm , ”−i terations ” ) ;
rho = ( sigmaopt/ sigma0 )ˆ ( 1 . 0/ n i t e r ) ;
nb f eva l s = neldermead get ( nm , ”−funevals” ) ;
mprintf ( ”%d %d %d %f\n” , n , nb f eva l s , n i t e r , rho ) ;
nm = neldermead destroy (nm) ;

endfunction
// Perform the 20 experiments
for n = 1:20

[ nb f eva l s n i t e r rho ] = solvepb ( n ) ;
a r ray rho (n) = rho ;
a r r ay nb f e va l s (n) = nb f eva l s ;
a r r a y n i t e r (n) = n i t e r ;

end

The figure 4.22 presents the results of this experiment. The rate of convergence, as measured
by ρ(S0, n) converges rapidly toward 1.

We check that the number of function evaluations increases approximately linearly with the
dimension of the problem in figure 4.23. A rough rule of thumb is that, for n = 1, 19, the number
of function evaluations is equal to 100n.

The figure 4.24 presents the rate of convergence depending on the number of variables. The
figure shows that the rate of convergence rapidly gets close to 1 when the number of variables
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n Function evaluations Iterations ρ(S0, n)
1 56 27 0.513002
2 113 55 0.712168
3 224 139 0.874043
4 300 187 0.904293
5 388 249 0.927305
6 484 314 0.941782
7 583 383 0.951880
8 657 430 0.956872
9 716 462 0.959721
10 853 565 0.966588
11 910 596 0.968266
12 1033 685 0.972288
13 1025 653 0.970857
14 1216 806 0.976268
15 1303 864 0.977778
16 1399 929 0.979316
17 1440 943 0.979596
18 1730 1193 0.983774
19 1695 1131 0.982881
20 1775 1185 0.983603

Figure 4.22: Numerical experiment with Nelder-Mead method on a generalized quadratic function

Figure 4.23: Nelder-Mead numerical experiment – Number of function evaluations depending on
the number of variables
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Figure 4.24: Nelder-Mead numerical experiment – Rate of convergence depending on the number
of variables

increases. That shows that the rate of convergence is slower and slower as the number of variables
increases, as explained by Han & Neumann.

4.5.3 O’Neill test cases

In this section, we present the results by O’Neill, who implemented a fortran 77 version of the
Nelder-Mead algorithm [33].

The O’Neill implementation of the Nelder-Mead algorithm has the following particularities

• the initial simplex is computed from the axes and a (single) length,

• the stopping rule is based on variance (not standard deviation) of function value,

• the expansion is greedy, i.e. the expansion point is accepted if it is better than the lower
point,

• an automatic restart is performed if a factorial test shows that the computed optimum is
greater than a local point computed with a relative epsilon equal to 1.e-3 and a step equal
to the length of the initial simplex.

The following tests are presented by O’Neill :

• Rosenbrock’s parabolic valley [41]

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)
2 (4.64)

with starting point x0 = (x1, x2) = (−1.2, 1)T . The function value at initial guess is
f(x0) = 24.2. The solution is x? = (1, 1)T where the function value is f(x?) = 0.
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• Powell’s quartic function [38]

f(x1, x2, x3, x4) = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4 (4.65)

with starting point x0 = (x1, x2, x3, x4) = (3,−1, 0, 1)T . The function value at initial guess
is f(x0) = 215.. The solution is x? = (0, 0, 0, 0)T where the function value is f(x?) = 0..

• Fletcher and Powell’s helical valley [9]

f(x1, x2, x3) = 100 (x3 + 10θ(x1, x2))
2 +

(√
x2

1 + x2
2 − 1

)2

+ x2
3 (4.66)

where

2πθ(x1, x2) =

{
arctan(x2, x1), if x1 > 0
π + arctan(x2, x1), if x1 < 0

(4.67)

with starting point x0 = (x1, x2, x3) = (−1, 0, 0). The function value at initial guess is
f(x0) = 2500. The solution is x? = (1, 0, 0)T where the function value is f(x?) = 0.. Note
that since arctan(0/0) is not defined neither the function f on the line (0, 0, x3). This line
is excluded by assigning a very large value to the function.

• the sum of powers

f(x1, . . . , x10) =
∑
i=1,10

x4
i (4.68)

with starting point x0 = (x1, . . . , x10) = (1, . . . , 1). The function value at initial guess is
f(x0) = 10. The solution is x? = (0, . . . , 0)T where the function value is f(x?) = 0..

The parameters are set to (following O’Neill’s notations)

• REQMIN = 10−16, the absolute tolerance on the variance of the function values in the
simplex,

• STEP = 1.0, the absolute side length of the initial simplex,

• ICOUNT = 1000, the maximum number of function evaluations.

The following Scilab script allows to define the objective functions.
// Rosenbrock ’ s ”banana” function
// init ia lguess [−1.2 1.0 ]
// xoptimum [1.0 1.0}
// foptimum 0.0
function [ y , index ] = rosenbrock ( x , index )
y = 100∗(x(2)−x(1)ˆ2)ˆ2+(1−x ( 1 ) ) ˆ 2 ;
endfunction
// Powell ’ s quartic valley
// in it ia lguess [3 .0 −1.0 0.0 1.0 ]
// xoptimum [0.0 0.0 0.0 0.0 ]
// foptimum 0.0
function [ f , index ] = powe l l qua r t i c ( x , index )

f = (x (1)+10.0∗x (2) )ˆ2 + 5 .0 ∗ ( x(3)−x (4) )ˆ2 + (x(2)−2.0∗x (3) )ˆ4 + 10.0 ∗ ( x (1) − x (4) )ˆ4
endfunction
// Fletcher and Powell he l ica l valley
// in it ia lguess [−1.0 0.0 0.0 ]
// xoptimum [1.0 0.0 0.0 ]
// foptimum 0.0
function [ f , index ] = f l e t c h e r p ow e l l h e l i c a l ( x , index )

rho = sqrt ( x (1) ∗ x (1) + x (2) ∗ x (2 ) )
twopi = 2 ∗ %pi
i f ( x(1)==0.0 ) then
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f = 1 . e154
else

i f ( x(1)>0 ) then
theta = atan ( x (2)/ x ( 1 ) ) / twopi

e l s e i f ( x(1)<0 ) then
theta = (%pi + atan ( x (2)/ x ( 1 ) ) ) / twopi

end
f = 100.0 ∗ ( x (3)−10.0∗ theta )ˆ2 + ( rho − 1 .0 )ˆ2 + x (3)∗x (3)

end
endfunction
// Sum of powers
// in it ia lguess ones(10 ,1)
// xoptimum zeros (10 ,1)
// foptimum 0.0
function [ f , index ] = sumpowers ( x , index )

f = sum( x ( 1 : 1 0 ) . ˆ 4 ) ;
endfunction

The following Scilab function solves an optimization problem, given the number of parameters,
the cost function and the initial guess.
//
// solvepb −−
// Find the solution for the given problem .
// Arguments
// n : number of variables
// cfun : cost function
// x0 : i n i t i a l guess
//
function [ nb f eva l s , n i t e r , nb r e s t a r t , f opt , cputime ] = solvepb ( n , cfun , x0 )

t i c ( ) ;
nm = neldermead new ( ) ;
nm = ne ldermead con f igure (nm, ”−numberofvariables” , n ) ;
nm = ne ldermead con f igure (nm, ”−function” , c fun ) ;
nm = ne ldermead con f igure (nm, ”−x0” , x0 ) ;
nm = ne ldermead con f igure (nm, ”−maxiter” , 1 000 ) ;
nm = ne ldermead con f igure (nm, ”−maxfunevals” , 1 000 ) ;
nm = ne ldermead con f igure (nm, ”−tolxmethod” ,%f ) ;
nm = ne ldermead con f igure (nm, ”−tolsimplexizemethod” ,%f ) ;
// Turn ON the tolerance on variance
nm = ne ldermead con f igure (nm, ”−tolvarianceflag ” ,%t ) ;
nm = ne ldermead con f igure (nm, ”−tolabsolutevariance” , 1 . e−16);
nm = ne ldermead con f igure (nm, ”−tolrelativevariance ” , 0 . 0 ) ;
// Turn ON automatic restart
nm = ne ldermead con f igure (nm, ”−restartf lag ” ,%t ) ;
nm = ne ldermead con f igure (nm, ”−restarteps” , 1 . e−3);
nm = ne ldermead con f igure (nm, ”−restartstep” , 1 . 0 ) ;
// Turn ON greedy expansion
nm = ne ldermead con f igure (nm, ”−greedy” ,%t ) ;
// Set i n i t i a l simplex to axis−by−axis ( this i s already the default anyway)
nm = ne ldermead con f igure (nm, ”−simplex0method” ,”axes” ) ;
nm = ne ldermead con f igure (nm, ”−simplex0length” , 1 . 0 ) ;
nm = ne ldermead con f igure (nm, ”−method” ,”variable” ) ;
//nm = neldermead configure (nm,”−verbose ” ,1) ;
//nm = neldermead configure (nm,”−verbosetermination ” ,1) ;
//
// Perform optimization
//
nm = neldermead search (nm) ;
//neldermead display(nm) ;
n i t e r = neldermead get ( nm , ”−i terations ” ) ;
nb f eva l s = neldermead get ( nm , ”−funevals” ) ;
f opt = neldermead get ( nm , ”−fopt” ) ;
xopt = neldermead get ( nm , ”−xopt” ) ;
nb r e s t a r t = neldermead get ( nm , ”−restartnb” ) ;
s t a tu s = neldermead get ( nm , ”−status” ) ;
nm = neldermead destroy (nm) ;
cputime = toc ( ) ;
mprintf ( ”=============================\n”)
mprintf ( ”status = %s\n” , s t a tu s )
mprintf ( ”xopt = [%s]\n” , strcat ( string ( xopt ) , ” ”) )
mprintf ( ”fopt = %e\n” , f opt )
mprintf ( ”niter = %d\n” , n i t e r )
mprintf ( ”nbfevals = %d\n” , nb f eva l s )
mprintf ( ”nbrestart = %d\n” , nb r e s t a r t )
mprintf ( ”cputime = %f\n” , cputime )
//mprintf ( ”%d %d %e %d %f\n”, nbfevals , nbrestart , fopt , niter , cputime ) ;

endfunction

The following Scilab script solves the 4 cases.
// Solve Rosenbrock ’ s
x0 = [−1.2 1 . 0 ] . ’ ;
[ nb f eva l s , n i t e r , nb r e s t a r t , f opt , cputime ] = solvepb ( 2 , rosenbrock , x0 ) ;

// Solve Powell ’ s quartic valley
x0 = [ 3 . 0 −1.0 0 .0 1 . 0 ] . ’ ;
[ nb f eva l s , n i t e r , nb r e s t a r t , f opt , cputime ] = solvepb ( 4 , powe l l qua r t i c , x0 ) ;

// Solve Fletcher and Powell he l ica l valley
x0 = [−1.0 0 .0 0 . 0 ] . ’ ;
[ nb f eva l s , n i t e r , nb r e s t a r t , f opt , cputime ] = solvepb ( 3 , f l e t c h e r p ow e l l h e l i c a l , x0 ) ;

72



// Solve Sum of powers
x0 = ones ( 1 0 , 1 ) ;
[ nb f eva l s , n i t e r , nb r e s t a r t , f opt , cputime ] = solvepb ( 10 , sumpowers , x0 ) ;

The table 4.25 presents the results which were computed by O’Neill compared with Scilab’s.
For most experiments, the results are very close in terms of number of function evaluations.
The problem #4 exhibits a different behavior than the results presented by O’Neill. For Scilab,
the tolerance on variance of function values is reach after 3 restarts, whereas for O’Neill, the
algorithm is restarted once and gives the result with 474 function evaluations. We did not find
any explanation for this behavior. A possible cause of difference may be the floating point system
which are different and may generate different simplices in the algorithms. Although the CPU
times cannot be compared (the article is dated 1972 !), let’s mention that the numerical experiment
were performed by O’Neill on a ICL 4-50 where the two problem 1 and 2 were solved in 3.34 seconds
and the problems 3 and 4 were solved in 22.25 seconds.

Author Problem Function Number Of Function Iterations CPU
Evaluations Restarts Value Time

O’Neill 1 148 0 3.19e-9 ? ?
Scilab 1 155 0 1.158612e-007 80 0.625000
O’Neill 2 209 0 7.35e-8 ? ?
Scilab 2 234 0 1.072588e-008 126 0.938000
O’Neill 3 250 0 5.29e-9 ? ?
Scilab 3 263 0 4.560288e-008 137 1.037000
O’Neill 4 474 1 3.80e-7 ? ?
Scilab 4 616 3 3.370756e-008 402 2.949000

Figure 4.25: Numerical experiment with Nelder-Mead method on O’Neill test cases - O’Neill
results and Scilab’s results

4.5.4 Mc Kinnon: convergence to a non stationnary point

In this section, we analyze the Mc Kinnon counter example from [23]. We show the behavior of
the Nelder-Mead simplex method for a family of examples which cause the method to converge
to a non stationnary point.

Consider a simplex in two dimensions with vertices at 0 (i.e. the origin), v(n+1) and v(n).
Assume that

f(0) < f(v(n+1)) < f(v(n)). (4.69)

The centroid of the simplex is v = v(n+1)/2, the midpoint of the line joining the best and
second vertex. The reflected point is then computed as

r(n) = v + ρ(v − v(n)) = v(n+1) − v(n) (4.70)

Assume that the reflection point r(n) is rejected, i.e. that f(v(n)) < f(r(n)). In this case,
the inside contraction step is taken and the point v(n+2) is computed using the reflection factor
−γ = −1/2 so that

v(n+2) = v − γ(v − v(n)) =
1

4
v(n+1) − 1

2
v(n) (4.71)
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Assume then that the inside contraction point is accepted, i.e. f(v(n+2)) < f(v(n+1)). If this
sequence of steps repeats, the simplices are subject to the following linear recurrence formula

4v(n+2) − v(n+1) + 2v(n) = 0 (4.72)

Their general solutions are of the form

v(n) = λk1a1 + λk2a2 (4.73)

where λii=1,2 are the roots of the characteristic equation and aii=1,2 ∈ Rn. The characteristic
equation is

4λ2 − λ+ 2λ = 0 (4.74)

and has the roots

λ1 =
1 +
√

33

8
≈ 0.84307, λ2 =

1−
√

33

8
≈ −0.59307 (4.75)

After Mc Kinnon has presented the computation of the roots of the characteristic equation, he
presents a special initial simplex for which the simplices degenerates because of repeated failure
by inside contraction (RFIC in his article). Consider the initial simplex with vertices v(0) = (1, 1)
and v(1) = (λ1, λ2) and 0. If follows that the particular solution for these initial conditions is
v(n) = (λn1 , λ

n
2 ).

Consider the function f(x1, x2) given by

f(x1, x2) = θφ|x1|τ + x2 + x2
2, x1 ≤ 0, (4.76)

= θxτ1 + x2 + x2
2, x1 ≥ 0. (4.77)

where θ and φ are positive constants. Note that (0,−1) is a descent direction from the origin
(0, 0) and that f is stricly convex provided τ > 1. f has continuous first derivatives if τ > 1,
continuous second derivatives if τ > 2 and continuous third derivatives if τ > 3.

Mc Kinnon computed the conditions on θ, φ and τ so that the function values are ordered
as expected, i.e. so that the reflection step is rejected and the inside contraction is accepted.
Examples of values which makes these equations hold are as follows : for τ = 1, θ = 15 and
φ = 10, for τ = 2, θ = 6 and φ = 60 and for τ = 3, θ = 6 and φ = 400.

We consider here the more regular case τ = 3, θ = 6 and φ = 400, i.e. the function is defined
by

f(x1, x2) =

{
−2400x3

1 + x2 + x2
2, if x1 ≤ 0,

6x3
1 + x2 + x2

2, if x1 ≥ 0.
(4.78)

The solution is x? = (0,−0.5)T .
The following Scilab script solves the optimization problem. We must use the ”-simplex0method”

option so that a user-defined initial simplex is used. Then the ”-coords0” allows to define the co-
ordinates of the initial simplex, where each row corresponds to a vertex of the simplex
function [ f , index ] = mckinnon3 ( x , index )

i f ( length ( x ) ˜= 2 )
error ( ’ Error : function expects a two dimens iona l input\n ’ ) ;

end
tau = 3 . 0 ;
theta = 6 . 0 ;
phi = 400 . 0 ;
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Figure 4.26: Nelder-Mead numerical experiment – Mc Kinnon example for convergence toward a
non stationnary point

i f ( x (1) <= 0.0 )
f = theta ∗ phi ∗ abs ( x (1) ) . ˆ tau + x (2) ∗ ( 1 .0 + x (2) ) ;

else
f = theta ∗ x ( 1 ) . ˆ tau + x (2) ∗ ( 1 .0 + x (2) ) ;

end
endfunction
lambda1 = (1 . 0 + sqrt ( 3 3 . 0 ) ) / 8 . 0 ;
lambda2 = (1 . 0 − sqrt ( 3 3 . 0 ) ) / 8 . 0 ;
coords0 = [
1 .0 1 .0
0 .0 0 .0
lambda1 lambda2
] ;
x0 = [ 1 . 0 1 . 0 ] ’ ;
nm = neldermead new ( ) ;
nm = ne ldermead con f igure (nm, ”−numberofvariables” , 2 ) ;
nm = ne ldermead con f igure (nm, ”−function” , mckinnon3 ) ;
nm = ne ldermead con f igure (nm, ”−x0” , x0 ) ;
nm = ne ldermead con f igure (nm, ”−maxiter” , 2 00 ) ;
nm = ne ldermead con f igure (nm, ”−maxfunevals” , 3 00 ) ;
nm = ne ldermead con f igure (nm, ”−tolfunrelative ” ,10∗%eps ) ;
nm = ne ldermead con f igure (nm, ”−tolxrelative ” ,10∗%eps ) ;
nm = ne ldermead con f igure (nm, ”−simplex0method” ,”given” ) ;
nm = ne ldermead con f igure (nm, ”−coords0” , coords0 ) ;
nm = neldermead search (nm) ;
ne ldermead di sp lay (nm) ;
nm = neldermead destroy (nm) ;

The figure 4.26 shows the contour plot of this function and the first steps of the Nelder-Mead
method. The global minimum is located at (0,−1/2). Notice that the simplex degenerates to the
point (0, 0), which is a non stationnary point.

The figure 4.27 presents the first steps of the algorithm in this numerical experiment. Because
of the particular shape of the contours of the function, the reflected point is always worse that
the worst vertex xn+1. This leads to the inside contraction step. The vertices constructed by Mc
Kinnon are so that the situation loops without end.

4.5.5 Kelley: oriented restart

Kelley analyzed Mc Kinnon counter example in [20]. He analyzed the evolution of the simplex
gradient and found that its norm begins to grow when the simplex start to degenerate. Therefore,
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Figure 4.27: Nelder-Mead numerical experiment – Detail of the first steps. The simplex converges
to a non stationnary point, after repeated inside contractions.

Kelley suggest to detect the stagnation of the algorithm by using a termination criteria which is
based on a sufficient decrease condition. Once that the stagnation is detected and the algorithm
is stopped, restarting the algorithm with a non-degenerated simplex allows to converge toward
the global minimum. Kelley advocates the use of the oriented restart, where the new simplex is
so that it maximizes the chances of producing a good descent direction at the next iteration.

The following Scilab script solves the optimization problem. We must use the ”-simplex0method”
option so that a user-defined initial simplex is used. Then the ”-coords0” allows to define the co-
ordinates of the initial simplex, where each row corresponds to a vertex of the simplex.

We also use the ”-kelleystagnationflag” option, which turns on the termination criteria asso-
ciated with Kelley’s stagnation detection method. Once that the algorithm is stopped, we want
to automatically restart the algorithm. This is why we turn on the ”-restartflag” option, which
enables to perform automatically 3 restarts. After an optimization process, the automatic restart
algorithm needs to know if the algorithm must restart or not. By default, the algorithm uses
a factorial test, due to O’Neill. This is why we configure the ”-restartdetection” to the ”kelley”
option, which uses Kelley’s termination condition as a criteria to determine if a restart must be
performed.
function [ f , index ] = mckinnon3 ( x , index )

i f ( length ( x ) ˜= 2 )
error ( ’ Error : function expects a two dimens iona l input\n ’ ) ;

end
tau = 3 . 0 ;
theta = 6 . 0 ;
phi = 400 . 0 ;
i f ( x (1) <= 0.0 )

f = theta ∗ phi ∗ abs ( x (1) ) . ˆ tau + x (2) ∗ ( 1 .0 + x (2) ) ;
else

f = theta ∗ x ( 1 ) . ˆ tau + x (2) ∗ ( 1 .0 + x (2) ) ;
end

endfunction
lambda1 = (1 . 0 + sqrt ( 3 3 . 0 ) ) / 8 . 0 ;
lambda2 = (1 . 0 − sqrt ( 3 3 . 0 ) ) / 8 . 0 ;
coords0 = [
1 .0 1 .0
0 .0 0 .0
lambda1 lambda2
] ;
x0 = [ 1 . 0 1 . 0 ] ’ ;
nm = neldermead new ( ) ;
nm = ne ldermead con f igure (nm, ”−numberofvariables” , 2 ) ;
nm = ne ldermead con f igure (nm, ”−function” , mckinnon3 ) ;
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Figure 4.28: Nelder-Mead numerical experiment – Mc Kinnon example with Kelley’s stagnation
detection.

nm = ne ldermead con f igure (nm, ”−x0” , x0 ) ;
nm = ne ldermead con f igure (nm, ”−maxiter” , 2 00 ) ;
nm = ne ldermead con f igure (nm, ”−maxfunevals” , 3 00 ) ;
nm = ne ldermead con f igure (nm, ”−tolsimplexizerelative ” , 1 . e−6);
nm = ne ldermead con f igure (nm, ”−simplex0method” ,”given” ) ;
nm = ne ldermead con f igure (nm, ”−coords0” , coords0 ) ;
nm = ne ldermead con f igure (nm, ”−kelleystagnationflag” ,%t ) ;
nm = ne ldermead con f igure (nm, ”−restartf lag ” ,%t ) ;
nm = ne ldermead con f igure (nm, ”−restartdetection” ,”kelley” ) ;
nm = neldermead search (nm) ;
ne ldermead di sp lay (nm) ;
nm = neldermead destroy (nm) ;

The figure 4.28 presents the first steps of the algorithm in this numerical experiment. We see
that the algorithm converges now toward the minimum x? = (0,−0.5)T .

4.5.6 Han counter examples

In his Phd thesis [13], Han presents two counter examples in which the Nelder-Mead algorithm
degenerates by applying repeatedly the inside contraction step.

First counter example

The first counter example is based on the function

f(x1, x2) = x2
1 + x2(x2 + 2)(x2 − 0.5)(x2 − 2) (4.79)

This function is nonconvex, bounded below and has bounded level sets. The initial simplex
is chosen as S0 = [(0.,−1), (0, 1), (1, 0)]. Han proves that the Nelder-Mead algorithm generates a
sequence of simplices Sk = [(0.,−1), (0, 1), ( 1

2k
, 0)].

function [ f , index ] = han1 ( x , index )
f = x (1)ˆ2 + x (2) ∗ ( x (2) + 2 . 0 ) ∗ ( x (2) − 0 . 5 ) ∗ ( x (2) − 2 . 0 ) ;

endfunction
coords0 = [

0 . −1.
0 . 1 .
1 . 0 .
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Figure 4.29: Nelder-Mead numerical experiment – Han example #1 for convergence toward a non
stationnary point

]
nm = neldermead new ( ) ;
nm = ne ldermead con f igure (nm, ”−numberofvariables” , 2 ) ;
nm = ne ldermead con f igure (nm, ”−function” , han1 ) ;
nm = ne ldermead con f igure (nm, ”−x0” , [ 1 . 0 1 . 0 ] ’ ) ;
nm = ne ldermead con f igure (nm, ”−maxiter” , 5 0 ) ;
nm = ne ldermead con f igure (nm, ”−maxfunevals” , 3 00 ) ;
nm = ne ldermead con f igure (nm, ”−tolfunrelative ” ,10∗%eps ) ;
nm = ne ldermead con f igure (nm, ”−tolxrelative ” ,10∗%eps ) ;
nm = ne ldermead con f igure (nm, ”−simplex0method” ,”given” ) ;
nm = ne ldermead con f igure (nm, ”−coords0” , coords0 ) ;
nm = neldermead search (nm) ;
ne ldermead di sp lay (nm) ;
nm = neldermead destroy (nm) ;

The figure 4.29 presents the isovalues and the simplices during the steps of the Nelder-Mead
algorithm. Note that the limit simplex contains no minimizer of the function. The failure is
caused by repeated inside contractions.

Second counter example

The second counter example is based on the function

f(x1, x2) = x2
1 + ρ(x2) (4.80)

where ρ is a continuous convex function with bounded level sets defined by{
ρ(x2) = 0, if |x2| ≤ 1,
ρ(x2) ≥ 0, if |x2| > 1.

(4.81)

The example given by Han for such a ρ function is

ρ(x2) =


0, if |x2| ≤ 1,
x2 − 1, if x2 > 1,
−x2 − 1, if x2 < −1.

(4.82)

The initial simplex is chosen as S0 = [(0., 1/2), (0,−1/2), (1, 0)]. Han prooves that the Nelder-
Mead algorithm generates a sequence of simplices Sk = [(0., 1/2), (0,−1/2), ( 1

2k
, 0)].
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Figure 4.30: Nelder-Mead numerical experiment – Han example #2 for convergence toward a non
stationnary point

function [ f , index ] = han2 ( x , index )
i f abs ( x ( 2 ) ) <= 1.0 then

rho = 0 .0
e l s e i f x (2) > 1 .0 then

rho = x (2) − 1
else

rho = −x (2) − 1
end
f = x (1)ˆ2 + rho ;

endfunction
coords0 = [

0 . 0 .5
0 . −0.5
1 . 0 .

]
nm = neldermead new ( ) ;
nm = ne ldermead con f igure (nm, ”−numberofvariables” , 2 ) ;
nm = ne ldermead con f igure (nm, ”−function” , han2 ) ;
nm = ne ldermead con f igure (nm, ”−x0” , [ 1 . 0 1 . 0 ] ’ ) ;
nm = ne ldermead con f igure (nm, ”−maxiter” , 5 0 ) ;
nm = ne ldermead con f igure (nm, ”−maxfunevals” , 3 00 ) ;
nm = ne ldermead con f igure (nm, ”−tolfunrelative ” ,10∗%eps ) ;
nm = ne ldermead con f igure (nm, ”−tolxrelative ” ,10∗%eps ) ;
nm = ne ldermead con f igure (nm, ”−simplex0method” ,”given” ) ;
nm = ne ldermead con f igure (nm, ”−coords0” , coords0 ) ;
nm = neldermead search (nm) ;
ne ldermead di sp lay (nm) ;
nm = neldermead destroy (nm) ;

The figure 4.30 presents the isovalues and the simplices during the steps of the Nelder-Mead
algorithm. The failure is caused by repeated inside contractions.

These two examples of non convergence show that the Nelder-Mead method may unreliable.
They also reveal that the Nelder-Mead method can generate simplices which collapse into a
degenerate simplex, by applying repeated inside contractions.

4.5.7 Torczon’s numerical experiments

In her Phd Thesis [48], Virginia Torczon presents the multi-directional direct search algorithm. In
order to analyze the performances of her new algorithm, she presents some interesting numerical
experiments with the Nelder-Mead algorithm. These numerical experiments are based on the
collection of test problems [24], published in the ACM by Moré, Garbow and Hillstrom in 1981.
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These test problems are associated with varying number of variables. In her Phd, Torczon presents
numerical experiments with n from 8 to 40. The stopping rule is based on the relative size of the
simplex. The angle between the descent direction (given by the worst point and the centroid),
and the gradient of the function is computed when the algorithm is stopped. Torczon shows that,
when the tolerance on the relative simplex size is decreased, the angle converges toward 90̊ . This
fact is observed even for moderate number of dimensions.

In this section, we try to reproduce Torczon numerical experiments.
All experiments are associated with the following sum of squares cost function

f(x) =
∑
i=1,m

fi(x)2, (4.83)

where m ≥ 1 is the number of functions fi in the problem.
The stopping criteria is based on the relative size of the simplex and is the following

1

∆
max
i=2,n+1

‖vi − v1‖ ≤ ε, (4.84)

where ∆ = max(1, ‖v1‖). Decreasing the value of ε allows to get smaller simplex sizes.
The initial simplex is not specified by Virginia Torczon. In our numerical experiments, we

choose an axis-by-axis simplex, with an initial length equal to 1.

Penalty #1

The first test function is the Penalty #1 function :

fi(x) = 10−5/2(xi − 1), i = 1, n (4.85)

fn+1 = −1

4
+
∑
j=1,n

x2
j . (4.86)

The initial guess is given by x0 = ((x0)1, (x0)2, . . . , (x0)n)T and (x0)j = j for j = 1, n.
The problem given by Moré, Garbow and Hillstrom in [24, 25] is associated with the size

n = 4. The value of the cost function at the initial guess x0 = (1, 2, 3, 4)T is f(x0) = 885.063.
The value of the function at the optimum is given in [24, 25] as f(x?) = 2.24997d− 5.

Virginia Torzcon present the results of this numerical experiment with the Penalty #1 test
case and n = 8. For this particular case, the initial function value is f(x0) = 4.151406.104.

In the following Scilab script, we define the penalty1 function. We define the function
penalty1 der which allows to compute the numerical derivative. The use of a global variable
is not
function [ y , index , n ] = penalty1 ( x , index , n )

y = 0 .0
for i = 1 : n

f i = (x ( i ) − 1) ∗ sqrt ( 1 . e−5)
y = y + f i ˆ2

end
f i = −1/4 + norm( x )ˆ2
y = y + f i ˆ2

endfunction

function y = pena l ty1 de r ( x , n )
[ y , index ] = penalty1 ( x , 1 , n )

endfunction

80



The following Scilab function defines the termination criteria, as defined in 4.84.
function [ t h i s , terminate , s t a tu s ] = mystoppingrule ( t h i s , s implex )

global DATA
v1 = opt imsimplex getx ( s implex , 1 )
de l t a = max ( 1 .0 , norm( v1 ) )
maxnorms = 0.0
n = neldermead cget ( t h i s , ”−numberofvariables” )
for i = 2 : n

v i = opt imsimplex getx ( s implex , i )
n i = norm ( v i − v1 )
maxnorms = max ( maxnorms , n i )

end
ep s i l o n = DATA . ep s i l o n
i f ( maxnorms / de l t a < ep s i l o n ) then

terminate = %t
s ta tu s = ”torczon”

else
terminate = %f

end
endfunction

The following solvepb function takes as input the dimension of the problem n, the cost function,
the initial guess and the tolerance. It uses the neldermead component and configures it so that
the algorithm uses the specific termination function defined previously.
function [ nb f eva l s , n i t e r , f opt , cputime ] = solvepb ( n , cfun , x0 , t o l e r an c e )

t i c ( ) ;
global DATA ;
DATA = t l i s t ( [

”TTORCZON”
”epsilon”

] ) ;
DATA . ep s i l o n = to l e r an c e ;

nm = neldermead new ( ) ;
nm = ne ldermead con f igure (nm, ”−numberofvariables” , n ) ;
nm = ne ldermead con f igure (nm, ”−function” , c fun ) ;
nm = ne ldermead con f igure (nm, ”−costfargument” , n ) ;
nm = ne ldermead con f igure (nm, ”−x0” , x0 ) ;
nm = ne ldermead con f igure (nm, ”−maxiter” , 10000) ;
nm = ne ldermead con f igure (nm, ”−maxfunevals” , 10000) ;
nm = ne ldermead con f igure (nm, ”−tolxmethod” ,%f ) ;
nm = ne ldermead con f igure (nm, ”−tolsimplexizemethod” ,%f ) ;
// Turn ON my own termination cr i ter ia
nm = ne ldermead con f igure (nm, ”−myterminate” , mystoppingrule ) ;
nm = ne ldermead con f igure (nm, ”−myterminateflag” ,%t ) ;
//
// Perform optimization
//
nm = neldermead search (nm) ;
n i t e r = neldermead get ( nm , ”−i terations ” ) ;
nb f eva l s = neldermead get ( nm , ”−funevals” ) ;
f opt = neldermead get ( nm , ”−fopt” ) ;
xopt = neldermead get ( nm , ”−xopt” ) ;
s t a tu s = neldermead get ( nm , ”−status” ) ;
nm = neldermead destroy (nm) ;
cputime = toc ( ) ;
// Compute angle between gradient and simplex direction
sopt = neldermead get ( nm , ”−simplexopt” )
xhigh = opt imsimplex getx ( sopt , n + 1 )
xbar = optimsimplex xbar ( sopt )
d = xbar − xhigh ;
g = derivative ( l i s t ( pena l ty1 de r , n ) , xopt , order=4 ) ;
co s t = −g∗d . ’ / norm( g ) / norm(d)
theta =acosd ( co s t )
// Compute condition of matrix of directions
D = optimsimplex dirmat ( sopt )
k = cond ( D )
// Display result
mprintf ( ”=============================\n”)
mprintf ( ”status = %s\n” , s t a tu s )
mprintf ( ”Tolerance=%e\n” , t o l e r an c e )
mprintf ( ”xopt = [%s]\n” , strcat ( string ( xopt ) , ” ”) )
mprintf ( ”fopt = %e\n” , f opt )
mprintf ( ”niter = %d\n” , n i t e r )
mprintf ( ”nbfevals = %d\n” , nb f eva l s )
mprintf ( ”theta = %25.15 f (deg)\n” , theta )
mprintf ( ”cputime = %f ( s )\n” , cputime )
mprintf ( ”cond(D) = %e ( s )\n” , k )

endfunction

We are now able to make a loop, and get the optimum function value for various values of the
tolerance use in the termination criteria.
x0 = [1 2 3 4 5 6 7 8 ] . ’ ;
for t o l = [ 1 . e−1 1 . e−2 1 . e−3 1 . e−4 1 . e−5 1 . e−6 1 . e−7]

[ nb f eva l s , n i t e r , f opt , cputime ] = solvepb ( 8 , penalty1 , x0 , t o l ) ;
end
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The figure 4.31 presents the results of these experiments. As Virginia Torczon, we get an
increasing number of function evaluations, with very little progress with respect to the function
value. We also get a search direction which becomes increasingly perpendicular to the gradient.

The number of function evaluations is not the same between Torczon’s and Scilab so that we
can conclude that the algorithm may be different variants of the Nelder-Mead algorithm or uses
a different initial simplex. We were not able to explain why the number of function evaluations
is so different.

Author Step f(v?1) Function Angle (̊)
Tolerance Evaluations

Torzcon 1.e-1 7.0355e-5 1605 89.396677792198
Scilab 1.e-1 9.567114e-5 314 101.297069897149110
Torzcon 1.e-2 6.2912e-5 3360 89.935373548613
Scilab 1.e-2 8.247686e-5 501 88.936037514983468
Torzcon 1.e-3 6.2912e-5 3600 89.994626919197
Scilab 1.e-3 7.485404e-5 1874 90.134605846897529
Torzcon 1.e-4 6.2912e-5 3670 89.999288284747
Scilab 1.e-4 7.481546e-5 2137 90.000107262503008
Torzcon 1.e-5 6.2912e-5 3750 89.999931862232
Scilab 1.e-5 7.481546e-5 2193 90.000366248870506
Torzcon 1.e-6 6.2912e-5 3872 89.999995767877
Scilab 1.e-6 7.427204e-5 4792 90.000006745652769
Torzcon 1.e-7 6.2912e-5 3919 89.999999335010
Scilab 1.e-7 7.427204e-5 4851 89.999996903432063

Figure 4.31: Numerical experiment with Nelder-Mead method on penalty #1 test case - Torczon
results and Scilab’s results

The figure 4.32 presents the condition number of the matrix of simplex direction. When
this condition number is high, the simplex is distorted. The numerical experiment shows that the
condition number is fastly increasing. This corresponds to the fact that the simplex is increasingly
distorted and might explains why the algorithm fails to make any progress.

Tolerance cond(D)
1.e-1 1.573141e+001
1.e-2 4.243385e+002
1.e-3 7.375247e+008
1.e-4 1.456121e+009
1.e-5 2.128402e+009
1.e-6 2.323514e+011
1.e-7 3.193495e+010

Figure 4.32: Numerical experiment with Nelder-Mead method on penalty #1 test case - Condition
number of the matrix of simplex directions
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4.6 Conclusion

The main advantage of the Nelder-Mead algorithm over Spendley et al. algorithm is that the shape
of the simplex is dynamically updated. That allows to get a reasonably fast convergence rate on
badly scaled quadratics, or more generally when the cost function is made of a sharp valley. Still,
the behavior of the algorithm when the dimension of the problem increases is disappointing: the
more there are variables, the more the algorithm is slow. In general, it is expected that the number
of function evaluations is roughly equal to 100n, where n is the number of parameters. When the
algorithm comes close to the optimum, the simplex becomes more and more distorted, so that
less and less progress is made with respect to the value of the cost function. This can measured
by the fact that the direction of search becomes more and more perpendicular to the gradient of
the cost function. It can also be measure by an increasing value of the condition number of the
matrix of simplex directions. Therefore, the user should not require a high accuracy from the
algorithm. Nevertheless, in most cases, the Nelder-Mead algorithms provides a good improvement
of the solution. In some situations, the simplex can become so distorted that it converges toward
a non-stationnary point. In this case, restarting the algorithm with a new nondegenerate simplex
allows to converge toward the optimum.
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Chapter 5

The fminsearch function

In this chapter, we analyze the implementation of the fminsearch which is provided in Scilab. In
the first part, we describe the specific choices of this implementation with respect to the Nelder-
Mead algorithm. In the second part, we present some numerical experiments which allows to
check that the feature is behaving as expected, by comparison to Matlab’s fminsearch.

5.1 fminsearch ’s algorithm

In this section, we analyse the specific choices used in fminsearch’s algorithm. We detail what
specific variant of the Nelder-Mead algorithm is performed, what initial simplex is used, the
default number of iterations and the termination criteria.

5.1.1 The algorithm

The algorithm used is the Nelder-Mead algorithm. This corresponds to the ”variable” value of
the ”-method” option of the neldermead. The ”non greedy” version is used, that is, the expansion
point is accepted only if it improves over the reflection point.

5.1.2 The initial simplex

The fminsearch algorithm uses a special initial simplex, which is an heuristic depending on the
initial guess. The strategy chosen by fminsearch corresponds to the -simplex0method flag of the
neldermead component, with the ”pfeffer” method. It is associated with the - simplex0deltausual
= 0.05 and -simplex0deltazero = 0.0075 parameters. Pfeffer’s method is an heuristic which is
presented in ”Global Optimization Of Lennard-Jones Atomic Clusters” by Ellen Fan [8]. It is due
to L. Pfeffer at Stanford. See in the help of optimsimplex for more details.

5.1.3 The number of iterations

In this section, we present the default values for the number of iterations in fminsearch.
The options input argument is an optionnal data structure which can contain the options.MaxIter

field. It stores the maximum number of iterations. The default value is 200n, where n is the num-
ber of variables. The factor 200 has not been chosen by chance, but is the result of experiments
performed against quadratic functions with increasing space dimension.
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This result is presented in ”Effect of dimensionality on the nelder-mead simplex method” by
Lixing Han and Michael Neumann [14]. This paper is based on Lixing Han’s PhD, ”Algorithms in
Unconstrained Optimization” [13]. The study is based on numerical experiment with a quadratic
function where the number of terms depends on the dimension of the space (i.e. the number
of variables). Their study shows that the number of iterations required to reach the tolerance
criteria is roughly 100n. Most iterations are based on inside contractions. Since each step of
the Nelder-Mead algorithm only require one or two function evaluations, the number of required
function evaluations in this experiment is also roughly 100n.

5.1.4 The termination criteria

The algorithm used by fminsearch uses a particular termination criteria, based both on the abso-
lute size of the simplex and the difference of the function values in the simplex. This termination
criteria corresponds to the ”-tolssizedeltafvmethod” termination criteria of the neldermead com-
ponent.

The size of the simplex is computed with the σ − + method, which corresponds to the
”sigmaplus” method of the optimsimplex component. The tolerance associated with this criteria
is given by the ”TolX” parameter of the options data structure. Its default value is 1.e-4.

The function value difference is the difference between the highest and the lowest function value
in the simplex. The tolerance associated with this criteria is given by the ”TolFun” parameter of
the options data structure. Its default value is 1.e-4.

5.2 Numerical experiments

In this section, we analyse the behaviour of Scilab’s fminsearch function, by comparison of Mat-
lab’s fminsearch. We especially analyse the results of the optimization, so that we can check that
the algorithm is indeed behaving the same way, even if the implementation is completely different.

We consider the unconstrained optimization problem [41]

min f(x) (5.1)

where x ∈ R2 and the objective function f is defined by

f(x) = 100 ∗ (x2 − x2
1)

2 + (1− x1)
2. (5.2)

The initial guess is

x0 = (−1.2, 1.)T , (5.3)

where the function value is

f(x0) = 24.2. (5.4)

The global solution of this problem is

x? = (1, 1.)T (5.5)

where the function value is

f(x?) = 0. (5.6)
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5.2.1 Algorithm and numerical precision

In this section, we are concerned by the comparison of the behavior of the two algorithms. We
are going to check that the algorithms produces the same intermediate and final results. We also
analyze the numerical precision of the results, by detailing the number of significant digits.

To make a more living presentation of this topic, we will include small scripts which allow to
produce the output that we are going to analyze. Because of the similarity of the languages, in
order to avoid confusion, we will specify, for each script, the language we use by a small comment.
Scripts and outputs written in Matlab’s language will begin with
% Matlab
% . . .

while script written in Scilab’s language will begin with
// Scilab
// . . .

The following Matlab script allows to see the behaviour of Matlab’s fminsearch function on
Rosenbrock’s test case.
% Matlab
format long
banana = @(x )100∗( x(2)−x(1)ˆ2)ˆ2+(1−x ( 1 ) ) ˆ 2 ;
[ x , fva l , e x i t f l a g , output ] = fminsearch ( banana , [ −1 .2 , 1 ] )
output . message

When this script is launched in Matlab, the following output is produced.
>> % Matlab
>> format long
>> banana = @(x )100∗( x(2)−x(1)ˆ2)ˆ2+(1−x ( 1 ) ) ˆ 2 ;
>> [ x , f v a l ] = fminsearch ( banana , [ −1 .2 , 1 ] )
>> [ x , fva l , e x i t f l a g , output ] = fminsearch ( banana , [ −1 .2 , 1 ] )
x =

1.000022021783570 1.000042219751772
f v a l =

8.177661197416674 e−10
e x i t f l a g =

1
output =

i t e r a t i o n s : 85
funcCount : 159
algor i thm : ’Nelder−Mead simplex direct search ’

message : [ 1 x194 char ]
>> output . message
ans =
Optimizat ion terminated :
the cur rent x s a t i s f i e s the terminat ion c r i t e r i a us ing
OPTIONS. TolX o f 1.000000 e−04
and F(X) s a t i s f i e s the convergence c r i t e r i a us ing
OPTIONS. TolFun o f 1 .000000 e−04

The following Scilab script allows to solve the problem with Scilab’s fminsearch.
// Scilab
format (25)
function y = banana (x )

y = 100∗(x(2)−x (1)ˆ2)ˆ2 + (1−x ( 1 ) ) ˆ 2 ;
endfunction
[ x , f v a l , e x i t f l a g , output ] = fminsearch ( banana , [−1.2 1 ] )
output . message

The output associated with this Scilab script is the following.
−−>// Scilab
−−>format (25)
−−>function y = banana (x )
−−> y = 100∗(x(2)−x (1)ˆ2)ˆ2 + (1−x ( 1 ) ) ˆ 2 ;
−−>endfunction
−−>[x , f v a l , e x i t f l a g , output ] = fminsearch ( banana , [−1.2 1 ] )

output =
algor i thm : ”Nelder−Mead simplex direct search”
funcCount : 159
i t e r a t i o n s : 85
message : [ 3 x1 string ]

e x i t f l a g =
1 .

f v a l =
0.0000000008177661099387

x =
1.0000220217835567027009 1.0000422197517710998227
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−−>output . message
ans =

! Optimizat ion terminated : !
! !
! the cur rent x s a t i s f i e s the terminat ion c r i t e r i a us ing OPTIONS. TolX o f 1 .000000 e−004 !
! !
! and F(X) s a t i s f i e s the convergence c r i t e r i a us ing OPTIONS. TolFun o f 1.000000 e−004 !

Because the two softwares do not use the same formatting rules to produce their outputs, we
must perform additionnal checking in order to check our results.

The following Scilab script displays the results with 16 significant digits.
// Scilab
// Print the result with 15 s igni f icant digits
mprintf ( ”%.15e” , f v a l ) ;
mprintf ( ”%.15e %.15e” , x (1 ) , x (2 ) ) ;

The previous script produces the following output.
−−>// Scilab
−−>mprintf ( ”%.15e” , f v a l ) ;
8 .177661099387146 e−010
−−>mprintf ( ”%.15e %.15e” , x (1 ) , x (2 ) ) ;
1.000022021783557 e+000 1.000042219751771 e+000

These results are reproduced verbatim in the table 5.1.

Matlab Iterations 85
Scilab Iterations 85
Matlab Function Evaluations 159
Scilab Function Evaluations 159
Matlab x? 1.000022021783570 1.000042219751772
Scilab x? 1.000022021783557e+000 1.000042219751771e+000
Matlab f(x?) 8.177661197416674e-10
Scilab f(x?) 8.177661099387146e-010

Figure 5.1: Numerical experiment with Rosenbrock’s function – Comparison of results produced
by Matlab and Scilab.

We must compute the common number of significant digits in order to check the consistency
of the results. The following Scilab script computes the relative error between Scilab and Matlab
results.
// Scilab
// Compare the result
xmb = [1.000022021783570 1.000042219751772 ] ;
e r r = norm( x − xmb) / norm(xmb) ;
mprintf ( ”Relative Error on x : %e\n” , e r r ) ;
fmb = 8.177661197416674 e−10;
e r r = abs ( f v a l − fmb) / abs ( fmb ) ;
mprintf ( ”Relative Error on f : %e\n” , e r r ) ;

The previous script produces the following output.
// Scilab
Re la t ive Error on x : 9 .441163 e−015
Re la t ive Error on f : 1 .198748 e−008

We must take into account for the floating point implementations of both Matlab and Scilab.
In both these numerical softwares, double precision floating point numbers are used, i.e. the
relative precision is both these softwares is ε ≈ 10−16. That implies that there are approximately
16 significant digits. Therefore, the relative error on x, which is equivalent to 15 significant digits,
is acceptable.

Therefore, the result is as close as possible to the result produced by Matlab. More specifically
:
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• the optimum x is the same up to 15 significant digits,

• the function value at optimum is the same up to 8 significant digits,

• the number of iterations is the same,

• the number of function evaluations is the same,

• the exit flag is the same,

• the content of the output is the same (but the string is not display the same way).

The output of the two functions is the same. We must now check that the algorithms performs
the same way, that is, produces the same intermediate steps.

The following Matlab script allows to get deeper information by printing a message at each
iteration with the ”Display” option.
% Matlab
opt = optimset ( ’Display ’ , ’ i ter ’ ) ;
[ x , fva l , e x i t f l a g , output ] = fminsearch ( banana , [ −1 .2 , 1 ] , opt ) ;

The previous script produces the following output.
% Matlab

I t e r a t i o n Func−count min f ( x ) Procedure
0 1 24 .2
1 3 20 .05 i n i t i a l s implex
2 5 5.1618 expand
3 7 4.4978 r e f l e c t
4 9 4.4978 cont rac t out s ide
5 11 4.38136 cont rac t i n s i d e
6 13 4.24527 cont rac t i n s i d e
7 15 4.21762 r e f l e c t
8 17 4.21129 cont rac t i n s i d e
9 19 4.13556 expand

10 21 4.13556 cont rac t i n s i d e
11 23 4.01273 expand
12 25 3.93738 expand
13 27 3.60261 expand
14 28 3.60261 r e f l e c t
15 30 3.46622 r e f l e c t
16 32 3.21605 expand
17 34 3.16491 r e f l e c t
18 36 2.70687 expand
19 37 2.70687 r e f l e c t
20 39 2.00218 expand
21 41 2.00218 cont rac t i n s i d e
22 43 2.00218 cont rac t i n s i d e
23 45 1.81543 expand
24 47 1.73481 cont rac t out s ide
25 49 1.31697 expand
26 50 1.31697 r e f l e c t
27 51 1.31697 r e f l e c t
28 53 1.1595 r e f l e c t
29 55 1.07674 cont rac t i n s i d e
30 57 0.883492 r e f l e c t
31 59 0.883492 cont rac t i n s i d e
32 61 0.669165 expand
33 63 0.669165 cont rac t i n s i d e
34 64 0.669165 r e f l e c t
35 66 0.536729 r e f l e c t
36 68 0.536729 cont rac t i n s i d e
37 70 0.423294 expand
38 72 0.423294 cont rac t out s ide
39 74 0.398527 r e f l e c t
40 76 0.31447 expand
41 77 0.31447 r e f l e c t
42 79 0.190317 expand
43 81 0.190317 cont rac t i n s i d e
44 82 0.190317 r e f l e c t
45 84 0.13696 r e f l e c t
46 86 0.13696 cont rac t out s ide
47 88 0.113128 cont rac t out s ide
48 90 0.11053 cont rac t i n s i d e
49 92 0.10234 r e f l e c t
50 94 0.101184 cont rac t i n s i d e
51 96 0.0794969 expand
52 97 0.0794969 r e f l e c t
53 98 0.0794969 r e f l e c t
54 100 0.0569294 expand
55 102 0.0569294 cont rac t i n s i d e
56 104 0.0344855 expand
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57 106 0.0179534 expand
58 108 0.0169469 cont rac t out s ide
59 110 0.00401463 r e f l e c t
60 112 0.00401463 cont rac t i n s i d e
61 113 0.00401463 r e f l e c t
62 115 0.000369954 r e f l e c t
63 117 0.000369954 cont rac t i n s i d e
64 118 0.000369954 r e f l e c t
65 120 0.000369954 cont rac t i n s i d e
66 122 5.90111 e−005 cont rac t out s ide
67 124 3.36682 e−005 cont rac t i n s i d e
68 126 3.36682 e−005 cont rac t out s ide
69 128 1.89159 e−005 cont rac t out s ide
70 130 8.46083 e−006 cont rac t i n s i d e
71 132 2.88255 e−006 cont rac t i n s i d e
72 133 2.88255 e−006 r e f l e c t
73 135 7.48997 e−007 cont rac t i n s i d e
74 137 7.48997 e−007 cont rac t i n s i d e
75 139 6.20365 e−007 cont rac t i n s i d e
76 141 2.16919 e−007 cont rac t out s ide
77 143 1.00244 e−007 cont rac t i n s i d e
78 145 5.23487 e−008 cont rac t i n s i d e
79 147 5.03503 e−008 cont rac t i n s i d e
80 149 2.0043 e−008 cont rac t i n s i d e
81 151 1.12293 e−009 cont rac t i n s i d e
82 153 1.12293 e−009 cont rac t out s ide
83 155 1.12293 e−009 cont rac t i n s i d e
84 157 1.10755 e−009 cont rac t out s ide
85 159 8.17766 e−010 cont rac t i n s i d e

Optimizat ion terminated :
the cur rent x s a t i s f i e s the terminat ion c r i t e r i a us ing OPTIONS. TolX o f 1.000000 e−004
and F(X) s a t i s f i e s the convergence c r i t e r i a us ing OPTIONS. TolFun o f 1.000000 e−004

The following Scilab script set the ”Display” option to ”iter” and run the fminsearch function.

// Scilab
opt = optimset ( ”Display” , ”iter ” ) ;
[ x , f v a l , e x i t f l a g , output ] = fminsearch ( banana , [−1.2 1 ] , opt ) ;

// Scilab
I t e r a t i o n Func−count min f ( x ) Procedure

0 3 24 .2
1 3 20 .05 i n i t i a l s implex
2 5 5.161796 expand
3 7 4.497796 r e f l e c t
4 9 4.497796 cont rac t out s ide
5 11 4.3813601 cont rac t i n s i d e
6 13 4.2452728 cont rac t i n s i d e
7 15 4.2176247 r e f l e c t
8 17 4.2112906 cont rac t i n s i d e
9 19 4.1355598 expand

10 21 4.1355598 cont rac t i n s i d e
11 23 4.0127268 expand
12 25 3.9373812 expand
13 27 3.602606 expand
14 28 3.602606 r e f l e c t
15 30 3.4662211 r e f l e c t
16 32 3.2160547 expand
17 34 3.1649126 r e f l e c t
18 36 2.7068692 expand
19 37 2.7068692 r e f l e c t
20 39 2.0021824 expand
21 41 2.0021824 cont rac t i n s i d e
22 43 2.0021824 cont rac t i n s i d e
23 45 1.8154337 expand
24 47 1.7348144 cont rac t out s ide
25 49 1.3169723 expand
26 50 1.3169723 r e f l e c t
27 51 1.3169723 r e f l e c t
28 53 1.1595038 r e f l e c t
29 55 1.0767387 cont rac t i n s i d e
30 57 0.8834921 r e f l e c t
31 59 0.8834921 cont rac t i n s i d e
32 61 0.6691654 expand
33 63 0.6691654 cont rac t i n s i d e
34 64 0.6691654 r e f l e c t
35 66 0.5367289 r e f l e c t
36 68 0.5367289 cont rac t i n s i d e
37 70 0.4232940 expand
38 72 0.4232940 cont rac t out s ide
39 74 0.3985272 r e f l e c t
40 76 0.3144704 expand
41 77 0.3144704 r e f l e c t
42 79 0.1903167 expand
43 81 0.1903167 cont rac t i n s i d e
44 82 0.1903167 r e f l e c t
45 84 0.1369602 r e f l e c t
46 86 0.1369602 cont rac t out s ide
47 88 0.1131281 cont rac t out s ide
48 90 0.1105304 cont rac t i n s i d e
49 92 0.1023402 r e f l e c t
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50 94 0.1011837 cont rac t i n s i d e
51 96 0.0794969 expand
52 97 0.0794969 r e f l e c t
53 98 0.0794969 r e f l e c t
54 100 0.0569294 expand
55 102 0.0569294 cont rac t i n s i d e
56 104 0.0344855 expand
57 106 0.0179534 expand
58 108 0.0169469 cont rac t out s ide
59 110 0.0040146 r e f l e c t
60 112 0.0040146 cont rac t i n s i d e
61 113 0.0040146 r e f l e c t
62 115 0.0003700 r e f l e c t
63 117 0.0003700 cont rac t i n s i d e
64 118 0.0003700 r e f l e c t
65 120 0.0003700 cont rac t i n s i d e
66 122 0.0000590 cont rac t out s ide
67 124 0.0000337 cont rac t i n s i d e
68 126 0.0000337 cont rac t out s ide
69 128 0.0000189 cont rac t out s ide
70 130 0.0000085 cont rac t i n s i d e
71 132 0.0000029 cont rac t i n s i d e
72 133 0.0000029 r e f l e c t
73 135 0.0000007 cont rac t i n s i d e
74 137 0.0000007 cont rac t i n s i d e
75 139 0.0000006 cont rac t i n s i d e
76 141 0.0000002 cont rac t out s ide
77 143 0.0000001 cont rac t i n s i d e
78 145 5 .235D−08 cont rac t i n s i d e
79 147 5 .035D−08 cont rac t i n s i d e
80 149 2 .004D−08 cont rac t i n s i d e
81 151 1 .123D−09 cont rac t i n s i d e
82 153 1 .123D−09 cont rac t out s ide
83 155 1 .123D−09 cont rac t i n s i d e
84 157 1 .108D−09 cont rac t out s ide
85 159 8 .178D−10 cont rac t i n s i d e

Optimizat ion terminated :
the cur rent x s a t i s f i e s the terminat ion c r i t e r i a us ing OPTIONS. TolX o f 1.000000 e−004
and F(X) s a t i s f i e s the convergence c r i t e r i a us ing OPTIONS. TolFun o f 1.000000 e−004

We check that the two softwares produces indeed the same intermediate results in terms of
iteration, function evaluations, function values and type of steps. The only difference is the itera-
tion #0, which is associated with function evaluation #1 in Matlab and with function evaluation
#3 in Scilab. This is because Scilab calls back the output function once the initial simplex is
computed, which requires 3 function evaluations.

5.2.2 Output and plot functions

In this section, we check that the output and plot features of the fminsearch function are the
same. We also check that the fields and the content of the optimValues data structure and the
state variable are the same in both languages.

The following output function plots in the current graphic window the value of the current
parameter x. It also unloads the content of the optimValues data structure and prints a message
in the console. To let Matlab load that script, save the content in a .m file, in a directory known
by Matlab.
% Matlab
function stop = outfun (x , optimValues , s t a t e )
stop = f a l s e ;
hold on ;
plot ( x (1 ) , x (2 ) , ’ . ’ ) ;
f c = optimValues . funccount ;
fv = optimValues . f v a l ;
i t = optimValues . i t e r a t i o n ;
pr = optimValues . procedure ;
disp ( sprintf ( ’%d %e %d −%s− %s\n ’ , f c , fv , i t , pr , s t a t e ) )
drawnow

The following Matlab script allows to perform the optimization so that the output function is
called back at each iteration.
% Matlab
opt ions = optimset ( ’OutputFcn ’ , @outfun ) ;
[ x f v a l ] = fminsearch ( banana , [−1.2 , 1 ] , opt ions )

This produces the plot which is presented in figure 5.2.
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Figure 5.2: Plot produced by Matlab’s fminsearch, with customized output function.

Matlab also prints the following messages in the console.
% Matlab
1 2.420000 e+001 0 −− i n i t
1 2.420000 e+001 0 −− i t e r
3 2.005000 e+001 1 − i n i t i a l simplex− i t e r
5 5.161796 e+000 2 −expand− i t e r
7 4.497796 e+000 3 −r e f l e c t− i t e r
9 4.497796 e+000 4 −cont rac t outs ide− i t e r
11 4.381360 e+000 5 −cont rac t in s ide− i t e r
13 4.245273 e+000 6 −cont rac t in s ide− i t e r
[ . . . ]
149 2.004302 e−008 80 −cont rac t in s ide− i t e r
151 1.122930 e−009 81 −cont rac t in s ide− i t e r
153 1.122930 e−009 82 −cont rac t outs ide− i t e r
155 1.122930 e−009 83 −cont rac t in s ide− i t e r
157 1.107549 e−009 84 −cont rac t outs ide− i t e r
159 8.177661 e−010 85 −cont rac t in s ide− i t e r
159 8.177661 e−010 85 −cont rac t in s ide− done

The following Scilab script sets the ”OutputFcn” option and then calls the fminsearch in order
to perform the optimization.
// Scilab
function outfun ( x , optimValues , s t a t e )

plot ( x (1 ) , x ( 2 ) , ’ . ’ ) ;
f c = optimValues . funccount ;
fv = optimValues . f v a l ;
i t = optimValues . i t e r a t i o n ;
pr = optimValues . procedure ;
mprintf ( ”%d %e %d −%s− %s\n” , f c , fv , i t , pr , s t a t e )

endfunction
opt = optimset ( ”OutputFcn” , outfun ) ;
[ x f v a l ] = fminsearch ( banana , [−1.2 1 ] , opt ) ;

The previous script produces the plot which is presented in figure 5.3.
Except for the size of the dots (which can be configured in both softwares), the graphics are

exactly the same.
Scilab also prints the following messages in the console.

// Scilab
3 2.420000 e+001 0 −− i n i t
3 2.005000 e+001 1 − i n i t i a l simplex− i t e r
5 5.161796 e+000 2 −expand− i t e r
7 4.497796 e+000 3 −r e f l e c t− i t e r
9 4.497796 e+000 4 −cont rac t outs ide− i t e r
11 4.381360 e+000 5 −cont rac t in s ide− i t e r
13 4.245273 e+000 6 −cont rac t in s ide− i t e r
[ . . . ]
149 2.004302 e−008 80 −cont rac t in s ide− i t e r
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Figure 5.3: Plot produced by Scilab’s fminsearch, with customized output function.

151 1.122930 e−009 81 −cont rac t in s ide− i t e r
153 1.122930 e−009 82 −cont rac t outs ide− i t e r
155 1.122930 e−009 83 −cont rac t in s ide− i t e r
157 1.107549 e−009 84 −cont rac t outs ide− i t e r
159 8.177661 e−010 85 −cont rac t in s ide− i t e r
159 8.177661 e−010 85 −− done

We see that the output produced by the two software are identical, expect for the two first
lines and the last line. The lines #1 and #2 are different is because Scilab computes the function
values of all the vertices before calling back the output function. The last line is different because
Scilab considers that once the optimization is performed, the type of the step is an empty string.
Instead, Matlab displays the type of the last performed step.

5.2.3 Predefined plot functions

Several pre-defined plot functions are provided with the fminsearch function. These functions are

• optimplotfval,

• optimplotx,

• optimplotfunccount.

In the following Matlab script, we use the optimplotfval pre-defined function.
% Matlab
opt ions = optimset ( ’PlotFcns ’ , @opt implot fva l ) ;
[ x f v a l ] = fminsearch ( banana , [−1.2 , 1 ] , opt ions )

The previous script produces the plot which is presented in figure 5.4.
The following Scilab script uses the optimplotfval pre-defined function.

// Scilab
opt = optimset ( ”OutputFcn” , op t imp lo t f va l ) ;
[ x f v a l ] = fminsearch ( banana , [−1.2 1 ] , opt ) ;
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Figure 5.4: Plot produced by Matlab’s fminsearch, with the optimplotfval function.

Figure 5.5: Plot produced by Scilab’s fminsearch, with the optimplotfval function.
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Figure 5.6: Plot produced by Scilab’s fminsearch, with the optimplotx function.

The previous script produces the plot which is presented in figure 5.5.
The comparison between the figures 5.4 and 5.5 shows that the two features produce very

similar plots. Notice that Scilab’s fminsearch does not provide the ”Stop” and ”Pause” buttons.
The figures 5.6 and 5.7 present the results of Scilab’s optimplotx and optimplotfunccount

functions.

5.3 Conclusion

The current version of Scilab’s fminsearch provides the same algorithm as Matlab’s fminsearch.
The numerical precision is the same. The optimset and optimget functions allows to configure the
optimization, as well as the output and plotting function. Pre-defined plotting function allows to
get a fast and nice plot of the optimization.
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Figure 5.7: Plot produced by Scilab’s fminsearch, with the optimplotfunccount function.
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Chapter 6

Conclusion

In this document, we have presented the Nelder-Mead component of Scilab. The Nelder-Mead
simplex algorithm is a direct search algorithm for multidimensional unconstrained optimization.
It does not require the derivative of the objective function and is based on the update of a simplex
made of n+ 1 points, where n is the dimension of the problem.

We have presented the theory associated to simplex based algorithms. We have presented
several initial simplex and emphasize their importance with respect to the convergence of the
algorithm. We have presented the simplex gradient and presented a result due to Kelley which
shows that, under regularity hypothesis, the simplex gradient is a good approximation of the
gradient of the objective function. We have shown an example where a degenerate simplex
produces a poor approximation of the simplex gradient.

We have presented Spendley’s et al algorithm based on a fixed shape simplex. We have pre-
sented several numerical experiments with this algorithm and shown that this algorithm requires
many function evaluations in the case of a badly scaled quadratic function.

The algorithm designed by Nelder and Mead has been analyzed. We presented several methods
to restart the algorithm and detection methods to see if it has failed. We have presented the
O’Neill factorial test and Kelley’s stagnation detection based on the simplex gradient. We have
analyzed the convergence properties of this algorithm on a quadratic function, as introduced by
Han and Neumman. Several numerical experiments have been presented. We have shown that
the Nelder-Mead algorithm does not require as many function evaluations as Spendley’s et al
algorithm, even in the case of a badly scaled quadratic function. We were able to see that the
Nelder-Mead algorithm can become slower and slower as the dimension increases, as suggested
by Han and Neumman. We have shown several numerical experiments where the Nelder-Mead
algorithm converges to a non-stationnary point. These counter examples include the examples by
Mc Kinnon and Han and Neumman. We have reproduced with Scilab the stagnation detection
and automatic restart on Mc Kinnon examples, as suggested by Kelley. We reproduced Torczon’s
numerical experiments which show that, in some cases, the search direction of the Nelder-Mead
algorithm becomes orthogonal to the gradient of the objective function.

In the final section of this document, we have presented the fminsearch function included in
Scilab and which is based on the Nelder-Mead component. We have analyzed the particular set of
algorithmic parameters which is specific to this implementation of the algorithm. We have shown
several numerical experiments which show that the new implementation correctly reproduces
Matlab’s fminsearch function.

This module has been integrated to Scilab v5.2 in 2009. In [3], we used this component to
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find a matrix which maximizes the error committed by the 1-norm condition estimator rcond in
Scilab. This problem was first introduced by Nicolas Higham in [16], as an example of a good test
case for a direct search method since the condition estimator is a non-smooth objective function.
In this context, the direct search algorithm is able to find automatically a matrix for which the
1-norm condition estimator is overestimating the condition number by a 1.5 factor. This test case
makes gradient-based algorithm fail, not only because the objective function has no derivatives
for some points in the domain, but also because the gradient is exactly zero on large areas of the
surface. Moreover, the optimum is located near a singularity of the objective function. In this
case, genetic algorithms require much more function evaluations.
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Appendix A

Nelder-Mead bibliography

In this section, we present a brief overview of selected papers, sorted in chronological order, which
deal with the Nelder-Mead algorithm

A.1 Spendley, Hext, Himsworth, 1962

”Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation”, Spend-
ley W., Hext G. R. and Himsworth F. R., American Statistical Association and American Society
for Quality, 1962

This article [45] presents an algorithm for unconstrained optimization in which a simplex is
used. The simplex has a fixed, regular (i.e. all lengths are equal), shape and is made of n+1
vertices (where n is the number of parameters to optimize). The algorithm is based on the
reflection of the simplex with respect to the centroid of better vertices. One can add a shrink
step so that the simplex size can converge to zero. Because the simplex shape cannot change,
the convergence rate may be very slow if the eigenvalues of the hessian matrix have very different
magnitude.

A.2 Nelder, Mead, 1965

”A Simplex Method for Function Minimization”, Nelder J. A. and Mead R., The Computer Jour-
nal, 1965

This article [31] presents the Nelder-Mead unconstrained optimization algorithm. It is based
on a simplex made of n+1 vertices and is a modification of the Spendley’s et al algorithm. It
includes features which enables the simplex to adapt to the local landscape of the cost function.
The additional steps are expansion, inside contraction and outside contraction. The stopping
criterion is based on the standard deviation of the function value on the simplex.

The convergence of the algorithm is better than Spendley’s et al. The method is compared
against Powell’s free-derivative method (1964) with comparable behavior. The algorithm is
”greedy” in the sense that the expansion point is kept if it improves the best function value
in the current simplex. Most Nelder-Mead variants which have been analyzed after are keeping
the expansion point only if it improves over the reflection point.
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A.3 Box, 1965

”A New Method of Constrained Optimization and a Comparison With Other Methods”, M. J.
Box, The Computer Journal 1965 8(1):42-52, 1965, British Computer Society

In this paper [5], Box presents a modification of the NM algorithm which takes into accounts
for bound constraints and non-linear constraints. This variant is called the Complex method. The
method expects that the initial guess satisfies the nonlinear constraints. The nonlinear constraints
are supposed to define a convex set. The algorithm ensures that the simplex evolves in the feasible
space.

The method to take into account for the bound constraints is based on projection of the
parameters inside the bounded domain. If some nonlinear constraint is not satisfied, the trial
point is moved halfway toward the centroid of the remaining points (which are all satisfying the
nonlinear constraints).

The simplex may collapse into a subspace if a projection occurs. To circumvent this problem,
k>=n+1 vertices are used instead of the original n+1 vertices. A typical value of k is k=2n. The
initial simplex is computed with a random number generator, which takes into account for the
bounds on the parameters. To take into account for the nonlinear constraints, each vertex of the
initial simplex is moved halfway toward the centroid of the points satisfying the constraints (in
which the initial guess already is).

A.4 Guin, 1968

”Discussion and correspondence: modification of the complex method of constrained optimiza-
tion”, J. A. Guin, The Computer Journal, 1968

In this article [12], Guin suggest 3 rules to improve the practical convergence properties of
Box’s complex method. These suggestions include the use of the next-to-worst point when the
worst point does not produce an improvement of the function value. The second suggestion is to
project the points strictly into the bounds, instead of projecting inside the bounds. The third
suggestion is related to the failure of the method when the centroid is no feasible. In that case,
Guin suggest to restrict the optimization in the subspace defined by the best vertex and the
centroid.

A.5 O’Neill, 1971

”Algorithm AS47 - Function minimization using a simplex procedure”, R. O’Neill, 1971, Applied
Statistics

In this paper [33], R. O’Neill presents a fortran 77 implementation of the Nelder-Mead algo-
rithm. The initial simplex is computed axis-by-axis, given the initial guess and a vector of step
lengths. A factorial test is used to check if the computed optimum point is a local minimum.

A.6 Parkinson and Hutchinson, 1972

In [35], ”An investigation into the efficiency of variants on the simplex method”, Parkinson and
Hutchinson explored several ways of improvement. First, they investigate the sensitivity of the
algorithm to the initial simplex. Two parameters were investigated, i.e. the initial length and
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the orientation of the simplex. An automatic setting for the orientation, though very desirable,
is not easy to design. Parkinson and Hutchinson tried to automatically compute the scale of
the initial simplex by two methods, based on a ”line search” and on a local ”steepest descent”.
Their second investigation adds a new step to the algorithm, the unlimited expansion. After
a sucessful expansion, the algorithm tries to produce an expansion point by taking the largest
possible number of expansion steps. After an unlimited expansion steps is performed, the simplex
is translated, so that excessive modification of the scale and shape is avoided. Combined and
tested against low dimension problems, the modified algorithm, named PHS, provides typical
gains of 20function evaluations.

A.7 Richardson and Kuester, 1973

”Algorithm 454: the complex method for constrained optimization”, Richardson Joel A. and
Kuester J. L., Commun. ACM, 1973

In this paper [40], Richardson and Kuester shows a fortran 77 implementation of Box’s complex
optimization method. The paper clarifies several specific points from Box’s original paper while
remaining very close to it. Three test problems are presented with the specific algoritmic settings
(such as the number of vertices for example) and number of iterations.

A.8 Shere, 1973

”Remark on algorithm 454 : The complex method for constrained optimization”, Shere Kenneth
D., Commun. ACM, 1974

In this article [43], Shere presents two counterexamples where the algorithm 454, implemented
by Richardson and Kuester produces an infinite loop. ”This happens whenever the corrected point,
the centroid of the remaining complex points, and every point on the line segment joining these
two points all have functional values lower than the functional values at each of the remaining
complex points.

A.9 Routh, Swartz, Denton, 1977

”Performance of the Super-Modified Simplex”, M.W. Routh, P.A. Swartz, M.B. Denton, Analytical
Chemistry, 1977

In this article [42], Routh, Swartz and Denton present a variant of the Nelder-Mead algorithm,
which is called the Modified Simplex Method (SMS) in their paper. The algorithm is modified in
the following way. After determination of the worst response (W), the responses at the centroid
(C) and reflected (R) vertices are measured and a second-order polynomial curve is fitted to the
responses at W, C and R. Furthermore, the curve is extrapolated beyond W and R by a percentage
of the W-R vector resulting in two types of curve shapes. In the concave down case, a maximum
occurs within the interval. Assuming a maximization process, evaluation of the derivative of the
curve reveals the location of the predicted optimum whose response is subsequently evaluated, the
new vertex is located at that position, and the optimization process is continued. In the concave up
case, a response maximum does not occur within the interval so the extended interval boundary
producing the highest predicted response is chosen as the new vertex location, its response is
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determined, and the optimization is continued. If the response at the predicted extended interval
boundary location does not prove to be greater than the response at R, the vertex R may instead
be retained as the new vertex and the process continued. The slope at the extended interval
boundary may additionally be evaluated dictating the magnitude of the expansion coefficient,
i.e. the greater the slope (indicating rapid approach to the optimum location), the smaller the
required expansion coefficient and, conversely, the smaller the slope (indicating remoteness from
the optimum location), the larger the required expansion coefficient.

Some additional safeguard procedure must be used in order to prevent the collapse of the
simplex.

A.10 Van Der Wiel, 1980

”Improvement of the Super-Modified Simplex Optimization Procedure”, P.F.A., Van Der Wiel
Analytica Chimica Acta, 1980

In this article [49], Van Der Wiel tries to improve the SMS method by Routh et al.. His
modifications are based on a Gaussian fit, weighted reflection point and estimation of response
at the reflection point. Van Der Wiel presents a simplified pseudo-code for one algorithm The
method is tested in 5 cases, where the cost function is depending on the exponential function.

A.11 Walters, Parker, Morgan and Deming, 1991

”Sequential Simplex Optimization for Quality and Productivity in Research, Development, and
Manufacturing”, F. S. Walters, L. R. Parker, Jr., S. L. Morgan, and S. N. Deming, 1991

In this book [50], Walters, Parker, Morgan and Deming give a broad view on the simplex
methods in chemistry. The Spendley et al. and Nelder-Mead algorithms are particularily deeply
analyzed, with many experiments analyzed in great detail. Template tables are given, so that an
engineer can manually perform the optimization and make the necessary calculations. Practical
advices are given, which allow to make a better use of the algorithms.

In chapter 5, ”Comments on Fixed-size and Variable-size Simplexes”, comparing the path of
the two algorithms allows to check that a real optimum has been found. When the authors analyze
the graph produced by the response depending on the number of iteration, the general behavior of
the fixed-size algorithm is made of four steps. Gains in response are initially rapid, but the rate of
return decreases as the simplex probes to find the ridge and then moves along the shallower ridge
to find the optimum. The behavior from different starting locations is also analyzed. Varying
the size of the initial simplex is also analyzed for the fixed-size simplex algorithm. The many
iterations which are produced when a tiny initial simplex is used with the fixed-size simplex is
emphasized.

The chapter 6, ”General Considerations”, warns that the user may setup an degenerate initial
simplex, leading to a false convergence of the algorithm. Various other initial simplices are
analyzed. Modifications in the algorithm to take into account for bounds contraints are presented.
The behavior of the fixed-size and variable-size simplex algorithms is analyzed when the simplex
converges. The ”k+1” rule, introduced by Spendley et al. to take into account for noise in the
cost function is presented.

The chapter 7, ”Additional Concerns and Topics” deals with advanced questions regarding
these algorithms. The variable size simplex algorithm is analyzed in the situation of a ridge.
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Partially oscillatory collapse of the Nelder-Mead algorithm is presented. The same behavior is
presented in the case of a saddle point. This clearly shows that practionners were aware of the
convergence problem of this algorithm well before Mc Kinnon presented a simple counter example
(in 1998). The ”Massive Contraction” step of Nelder and Mead is presented as a solution for this
oscillatory behavior. The authors present a method, due to Ernst, which allows to keep the volume
of the simplex, instead of shrinking it. This method is based on a translation of the simplex. This
modification requires n+ 1 function evaluations. A more efficient method, due to King, is based
on reflection with respect to the next-to-worst vertex. This modification was first suggested by
Spendley et al. in their fixed-size simplex algorithm.

In the same chapter, the authors present the behavior of the algorithms in the case of multiple
optima. They also present briefly other types of simplex algorithms.

A complete bibliography (from 1962 to 1990) on simplex-based optimization is given in the
end of the book.

A.12 Subrahmanyam, 1989

”An extension of the simplex method to constrained nonlinear optimization”, M. B. Subrah-
manyam, Journal of Optimization Theory and Applications, 1989

In this article [46], the simplex algorithm of Nelder and Mead is extended to handle nonlinear
optimization problems with constraints. To prevent the simplex from collapsing into a subspace
near the constraints, a delayed reflection is introduced for those points moving into the infeasible
region. Numerical experience indicates that the proposed algorithm yields good results in the
presence of both inequality and equality constraints, even when the constraint region is narrow.

If a vertex becomes infeasible, we do not increase the value at this vertex until the next
iteration is completed. Thus, the next iteration is accomplished using the actual value of the
function at the infeasible point. At the end of the iteration, in case the previous vertex is not the
worst vertex, it is assigned a high value, so that it then becomes a candidate for reflection during
the next iteration.

The paper presents numerical experiments which are associated with thousands of calls to the
cost function. This may be related with the chosen reflection factor equal to 0.95, which probably
cause a large number of reflections until the simplex can finally satisfy the constraints.

A.13 Numerical Recipes in C, 1992

”Numerical Recipes in C, Second Edition”, W. H. Press, Saul A. Teukolsky, William T. Vetterling
and Brian P. Flannery, 1992

In this book [39], an ANSI C implementation of the Nelder-Mead algorithm is given. The
initial simplex is based on the axis. The termination criterion is based on the relative difference
of the function value of the best and worst vertices in the simplex.

A.14 Lagarias, Reeds, Wright, Wright, 1998

”Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions”, Jeffrey C. La-
garias, James A. Reeds, Margaret H. Wright and Paul E. Wright, SIAM Journal on Optimization,
1998
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This paper [21] presents convergence properties of the Nelder-Mead algorithm applied to stricly
convex functions in dimensions 1 and 2. Proofs are given to a minimizer in dimension 1, and
various limited convergence results for dimension 2.

A.15 Mc Kinnon, 1998

”Convergence of the Nelder–Mead Simplex Method to a Nonstationary Point”, SIAM J. on Opti-
mization, K. I. M. McKinnon, 1998

In this article [23], Mc Kinnon analyzes the behavior of the Nelder-Mead simplex method for
a family of examples which cause the method to converge to a nonstationnary point. All the ex-
amples use continuous functions of two variables. The family of functions contains strictly convex
functions with up to three continuous derivatives. In all the examples, the method repeatedly
applies the inside contraction step with the best vertex remaining fixed. The simplices tend to a
straight line which is orthogonal to the steepest descent direction. It is shown that this behavior
cannot occur for functions with more than three continuous derivatives.

A.16 Kelley, 1999

”Detection and Remediation of Stagnation in the Nelder–Mead Algorithm Using a Sufficient
Decrease Condition”, SIAM J. on Optimization, Kelley, C. T., 1999

In this article [19], Kelley presents a test for sufficient decrease which, if passed for the entire
iteration, will guarantee convergence of the Nelder-Mead iteration to a stationary point if the
objective function is smooth. Failure of this condition is an indicator of potential stagnation.
As a remedy, Kelley propose to restart the algorithm with an oriented simplex, smaller than
the previously optimum simplex, but with a better shape and which approximates the steepest
descent step from the current best point. The method is experimented against Mc Kinnon test
function and allow to converge to the optimum, where the original Nelder -Mead algorithm was
converging to a non-stationary point. Although the oriented simplex works well in practice,
other strategies may be chosen with similar results, such as a simplex based on axis, a regular
simplex (like Spendley’s) or a simplex based on the variable magnitude (like Pfeffer’s suggestion
in Matlab’s fminsearch). The paper also shows one convergence theorem which prove that if the
sufficient decrease condition is satisfied and if the product of the condition of the simplex by the
simplex size converge to zero, therefore, with additional assumptions on the cost function and the
sequence of simplices, any accumulation point of the simplices is a critical point of f.

The same ideas are presented in the book [20].

A.17 Han, 2000

In his Phd thesis [13], Lixing Han analyzes the properties of the Nelder-Mead algorithm. Han
present two examples in which the Nelder-Mead simplex method does not converge to a single
point. The first example is a nonconvex function with bounded level sets and it exhibits similar
nonconvergence properties with the Mc Kinnon counterexample f(ξ1, ξ2) = ξ2

1 − ξ2(ξ2 − 2). The
second example is a convex function with bounded level sets, for which the Nelder-Mead simplices
converge to a degenerate simplex, but not to a single point. These nonconvergent examples
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support the observations by some practitionners that in the Nelder-Mead simplices may collapse
into a degenerate simplex and therefore support the use of a restart strategy. Han also investigates
the effect of the dimensionality of the Nelder-Mead method. It is shown that the Nelder-Mead
simplex method becomes less efficient as the dimension increases. Specifically, Han consider the
quadratic function ξ2

1 + . . . + ξn1 and shows that the Nelder-Mead method becomes less efficient
as the dimension increases. The considered example offers insight into understanding the effect
of dimensionnality on the Nelder-Mead method. Given all the known failures and inefficiencies
of the Nelder-Mead method, a very interesting question is why it is so popular in practice. Han
present numerical results of the Nelder-Mead method on the standard collection of Moré-Garbow-
Hillstrom with dimensions n ≤ 6. Han compare the Nelder-Mead method with a finite difference
BFGS method and a finite difference steepest descent method. The numerical results show that
the Nelder-Mead method is much more efficient than the finite difference steepest descent method
for the problems he tested with dimensions n ≤ 6. It is also often comparable with the finite
difference BFGS method, which is believed to be the best derivative-free method. Some of these
results are reproduced in [14] by Han and Neumann, ”Effect of dimensionality on the Nelder-
ĂŞMead simplex method” and in [15], ”On the roots of certain polynomials arising from the
analysis of the Nelder-Mead simplex method”.

A.18 Nazareth, Tseng, 2001

”Gilding the Lily: A Variant of the Nelder-Mead Algorithm Based on Golden-Section Search”
Computational Optimization and Applications, 2001, Larry Nazareth and Paul Tseng

The article [30] propose a variant of the Nelder-Mead algorithm derived from a reinterpretation
of univariate golden-section direct search. In the univariate case, convergence of the variant can
be analyzed analogously to golden-section search.

The idea is based on a particular choice of the reflection, expansion, inside and outside contrac-
tion parameters, based on the golden ratio. This variant of the Nelder-Mead algorithm is called
Nelder-Mead-Golden- Ratio, or NM-GS. In one dimension, the authors exploit the connection
with golden-search method and allows to prove a convergence theorem on unimodal univariate
functions. This is marked contrast to the approach taken by Lagarias et al. where considerable
effort is expended to show convergence of the original NM algorithm on strictly convex univari-
ate functions. With the NM-GS variant, one obtain convergence in the univariate case (using a
relatively simple proof) on the broader class of unimodal functions.

In the multivariate case, the authors modify the variant by replacing strict descent with
fortified descent and maintaining the interior angles of the simplex bounded away from zero.
Convergence of the modified v ariant can be analyzed by applying results for a fortified- descent
simplicial search method. Some numerical experience with the variant is reported.

A.19 Perry, Perry, 2001

”A New Method For Numerical Constrained Optimization” by Ronald N. Perry, Ronald N. Perry,
March 2001

In this report [36], we propose a new method for constraint handling that can be applied
to established optimization algorithms and which significantly improves their ability to traverse
through constrained space. To make the presentation concrete, we apply the new constraint
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method to the Nelder and Mead polytope algorithm. The resulting technique, called SPIDER,
has shown great initial promise for solving difficult (e.g., nonlinear, nondifferentiable, noisy)
constrained problems.

In the new method, constraints are partitioned into multiple levels. A constrained perfor-
mance, independent of the objective function, is defined for each level. A set of rules, based
on these partitioned performances, specify the ordering and movement of vertices as they strad-
dle constraint boundaries; these rules [...] have been shown to significantly aid motion along
constraints toward an optimum. Note that the new approach uses not penalty function and
thus does not warp the performance surface, thereby avoiding the possible ill-conditioning of the
objective function typical in penalty methods.

No numerical experiment is presented.

A.20 Andersson, 2001

”Multiobjective Optimization in Engineering Design - Application to fluid Power Systems” Johan
Andersson, 2001

This PhD thesis [2] gives a brief overview of the Complex method by Box in section 5.1.

A.21 Peters, Bolte, Marschner, Nüssen and Laur, 2002

In [37], ”Enhanced Optimization Algorithms for the Development of Microsystems”, the authors
combine radial basis function interpolation methods with the complex algorithm by Box. Interpo-
lation with radial basis functions is a linear approach in which the model function f is generated
via the weighted sum of the basis functions Φi(r). The parameter r describes the distance of the
current point from the center xi of the ith basis function. It is calculated via the euclidean norm.
It is named ComplInt strategy. The name stands for Complex in combination with interpolation.
The Complex strategy due to Box is very well suited for the combination with radial basis function
interpolation for it belongs to the polyhedron strategies. The authors presents a test performed
on a pratical application, which leaded them to the following comment : ”The best result achieved
with the ComplInt strategy is not only around 10% better than the best result of the Complex
strategy due to Box, the ComplInt also converges much faster than the Complex does: while the
Complex strategy needs an average of 7506, the ComplInt only calls for an average of 2728 quality
function evaluations.”

A.22 Han, Neumann, 2006

”Effect of dimensionality on the Nelder-Mead simplex method”, L. Han and M. Neumann (2006),
In this article [14], the effect of dimensionality on the Nelder-Mead algorithm is investigated.

It is shown that by using the quadratic function f(x) = xT ∗ x, the Nelder-Mead simplex method
deteriorates as the dimension increases. More precisely, in dimension 1, with the quadratic func-
tion f(x) = x2 and a particular choice of the initial simplex, applies inside contraction step
repeatedly and the convergence rate (as the ratio between the length of the simplex at two con-
secutive steps) is 1/2. In dimension 2, with a particular initial simplex, the NM algorithm applies
outside contraction step repeatedly and the convergence rate is

√
(2)/2.
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For n>=3, a numerical experiment is performed on the quadratic function with the fminsearch
algorithm from Matlab. It is shown that the original NM algorithm has a convergence rate which
is converging towards 1 when n increases. For n=32, the rate of convergence is 0.9912.

A.23 Singer, Nelder, 2008

http://www.scholarpedia.org/article/Nelder-Mead_algorithm Singer and Nelder
This article is a complete review of the Nelder-Mead algorithm. Restarting the algorithm is

adviced when a premature termination occurs.
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Appendix B

Implementations of the Nelder-Mead
algorithm

In the following sections, we analyze the various implementations of the Nelder-Mead algorithm.
We analyze the Matlab implementation provided by the fminsearch command. We analyze the
matlab algorithm provided by C.T. Kelley and the Scilab port by Y. Collette. We present the
Numerical Recipes implementations. We analyze the O’Neill fortran 77 implementation ”AS47”.
The Burkardt implementation is also covered. The implementation provided in the NAG collection
is detailed. The Nelder-Mead algorithm from the Gnu Scientific Library is analyzed.

B.1 Matlab : fminsearch

The Matlab command fminsearch implements the Nelder-Mead algorithm [22]. It provides fea-
tures such as

• maximum number of function evaluations,

• maximum number of iterations,

• termination tolerance on the function value,

• termination tolerance on x,

• output command to display the progress of the algorithm.

B.2 Kelley and the Nelder-Mead algorithm

C.T. Kelley has written a book [20] on optimization method and devotes a complete chapter
to direct search algorithms, especially the Nelder-Mead algorithm. Kelley provides in [18] the
Matlab implementation of the Nelder-Mead algorithm. That implementation uses the restart
strategy that Kelley has published in [19] and which improves the possible stagnation of the
algorithm on non local optimization points. No tests are provided.

The following is extracted from the README provided with these algorithms.
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These files are current as of December 9, 1998.

-----------------

MATLAB/FORTRAN software for Iterative Methods for Optimization

by C. T. Kelley

These M-files are implementations of the algorithms from the book

"Iterative Methods for Optimization", to be published by SIAM,

by C. T. Kelley. The book, which describes the algorithms, is available

from SIAM (service@siam.org). These files can be modified for non-commercial

purposes provided that the authors:

C. T. Kelley for all MATLAB codes,

P. Gilmore and T. D. Choi for iffco.f

J. M. Gablonsky for DIRECT

are acknowledged and clear comment lines are inserted

that the code has been changed. The authors assume no no responsibility

for any errors that may exist in these routines.

Questions, comments, and bug reports should be sent to

Professor C. T. Kelley

Department of Mathematics, Box 8205

North Carolina State University

Raleigh, NC 27695-8205

(919) 515-7163

(919) 515-3798 (FAX)

Tim_Kelley@ncsu.edu

From Scilab’s point of view, that ?licence? is a problem since it prevents the use of the source
for commercial purposes.

B.3 Nelder-Mead Scilab Toolbox : Lolimot

The Lolimot project by Yann Collette provide two Scilab-based Nelder- Mead implementations [6].
The first implementation is a Scilab port of the Kelley script. The licence problem is therefore not
solved by this script. The second implementation [7] implements the restart strategy by Kelley.
No tests are provided.
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B.4 Numerical Recipes

The Numerical Recipes [39] provides the C source code of an implementation of the Nelder-Mead
algorithm. Of course, this is a copyrighted material which cannot be included in Scilab.

B.5 NASHLIB : A19

Nashlib is a collection of Fortran subprograms from ”Compact Numerical Methods for Computers;
Linear Algebra and Function Minimisation, ”by J.C. Nash. The subprograms are written without
many of the extra features usually associated with commercial mathematical software, such as
extensive error checking, and are most useful for those applications where small program size is
particularly important. The license is public domain.

Nahslib includes one implementation of the Nelder-Mead algorithm [28], [29]. It is written in
fortran 77. The coding style is ”goto”-based and may not be easy to maintain.

B.6 O’Neill implementations

The paper [33] by R. O’Neil in the journal of Applied Statistics presents a fortran 77 implemen-
tation of the Nelder-Mead algorithm. The source code itself is available in [32]. Many of the
following implementations are based on this primary source code. We were not able to get the
paper [33] itself.

On his website, John Burkardt gives a fortran 77 source code of the Nelder-Mead algorithm
[34]. The following are the comments in the header of the source code.

c Discussion:

c

c This routine seeks the minimum value of a user-specified function.

c

c Simplex function minimisation procedure due to Nelder+Mead(1965),

c as implemented by O’Neill(1971, Appl.Statist. 20, 338-45), with

c subsequent comments by Chambers+Ertel(1974, 23, 250-1), Benyon(1976,

c 25, 97) and Hill(1978, 27, 380-2)

c

c The function to be minimized must be defined by a function of

c the form

c

c function fn ( x, f )

c double precision fn

c double precision x(*)

c

c and the name of this subroutine must be declared EXTERNAL in the

c calling routine and passed as the argument FN.

c

c This routine does not include a termination test using the
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c fitting of a quadratic surface.

c

c Modified:

c

c 27 February 2008

c

c Author:

c

c FORTRAN77 version by R ONeill

c Modifications by John Burkardt

The ”Bayesian Survival Analysis” book by Joseph G. Ibrahim, Ming-Hui Chen, and Debajyoti
Sinha provides in [1] a fortran 77 implementation of the Nelder-Mead algorithm. The following
is the header of the source code.

c Simplex function minimisation procedure due to Nelder+Mead(1965),

c as implemented by O’Neill(1971, Appl.Statist. 20, 338-45), with

c subsequent comments by Chambers+Ertel(1974, 23, 250-1), Benyon(1976,

c 25, 97) and Hill(1978, 27, 380-2)

The O’Neill implementation uses a restart procedure which is based on a local axis by axis
search for the optimality of the computed optimum.

B.7 Burkardt implementations

John Burkardt gives several implementations of the Nelder-Mead algorithm

• in fortran 77 [34]

• in Matlab by Jeff Borggaard [4].

B.8 NAG Fortran implementation

The NAG Fortran library provides the E04CCF/E04CCA routines [26] which implements the
simplex optimization method. E04CCA is a version of E04CCF that has additional parameters in
order to make it safe for use in multithreaded applications. As mentioned in the documentation,
”The method tends to be slow, but it is robust and therefore very useful for functions that are
subject to inaccuracies.”. The termination criteria is based on the standard deviation of the
function values of the simplex.

The specification of the cost function for E04CCA is:

SUBROUTINE FUNCT ( N, XC, FC, IUSER, RUSER)

where IUSER and RUSER and integer and double precision array, which allow the user to supply
information to the cost function. An output routine, called MONIT is called once every iteration in
E04CCF/E04CCA. It can be used to print out the current values of any selection of its parameters
but must not be used to change the values of the parameters.

111



B.9 GSL implementation

The Gnu Scientific Library provides two Nelder-Mead implementations. The authors are Tuomo
Keskitalo, Ivo Alxneit and Brian Gough. The size of the simplex is the root mean square sum of
length of vectors from simplex center to corner points. The termination criteria is based on the
size of the simplex.

The C implementation of the minimization algorithm is original. The communication is direct,
in the sense that the specific optimization algorithm calls back the cost function. A specific
optimization implementation provides four functions : ”alloc”, ”free”, ”iterate”and ”set”. A generic
optimizer is created by connecting it to a specific optimizer. The user must write the loop over
the iterations, making successive calls to the generic ”iterate” function, which, in turns, calls the
specific ”iterate” associated with the specific optimization algorithm.

The cost function can be provided as three function pointers

• the cost function f ,

• the gradient g,

• both the cost function and the gradient.

Some additional parameters can be passed to these functions.
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